• Previous Article
    Fractional and fractal advection-dispersion model
  • DCDS-S Home
  • This Issue
  • Next Article
    Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme
July  2021, 14(7): 2041-2053. doi: 10.3934/dcdss.2020261

A new application of the reproducing kernel method

Siirt University, Art and Science Faculty Department of Mathematics 56100 Siirt, Turkey

* Corresponding author: Ali Akgül

Received  April 2019 Revised  June 2019 Published  July 2021 Early access  September 2020

We give a new implementation of the reproducing kernel method to investigate difference equations in this paper. We obtain the solutions in terms of convergent series. The method of obtaining the approximate solution in form of an algorithm is presented. We demonstrate some experiments to prove the accuracy of the technique.

Citation: Ali Akgül. A new application of the reproducing kernel method. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2041-2053. doi: 10.3934/dcdss.2020261
References:
[1]

A. Akgül, On the solution of higher-order difference equations, Mathematical Methods in the Applied Sciences, 40 (2017), 6165-6171.  doi: 10.1002/mma.3870.

[2]

A. Akgül and E. Bonyah, Reproducing kernel hilbert space method for the solutions of generalized kuramoto–sivashinsky equation, Journal of Taibah University for Science, 13 (2019), 661-669. 

[3]

A. AkgülM. Inc and E. Karatas, Reproducing kernel functions for difference equations, Discrete & Continuous Dynamical Systems-Series S, 8 (2015), 1055-1064.  doi: 10.3934/dcdss.2015.8.1055.

[4]

O. A. Arqub, Computational algorithm for solving singular fredholm time-fractional partial integrodifferential equations with error estimates, Journal of Applied Mathematics and Computing, 59 (2019), 227-243.  doi: 10.1007/s12190-018-1176-x.

[5]

F. V. Atkinson, Discrete and Continuous Boundary Problems, Mathematics in Science and Engineering, Vol. 8. Academic Press, New York, 1964.

[6]

B. Azarnavid, M. Emamjome, M. Nabati and S. Abbasbandy, A reproducing kernel hilbert space approach in meshless collocation method, Computational and Applied Mathematics, 38 (2019), Art. 72, 19 pp. doi: 10.1007/s40314-019-0838-0.

[7]

M. Cui and Y. Lin, Nonlinear Numerical Analysis in the Reproducing Kernel Space, Nova Science Publishers Inc., New York, 2009.

[8]

M. De la Sen, The generalized beverton–holt equation and the control of populations, Applied Mathematical Modelling, 32 (2008), 2312-2328.  doi: 10.1016/j.apm.2007.09.007.

[9]

M. Foroutan, R. Asadi and A. Ebadian, A reproducing kernel hilbert space method for solving the nonlinear three-point boundary value problems, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 32 (2019), e2573. doi: 10.1002/jnm.2573.

[10]

G. N. Gumah, M. F. M. Naser, M. Al-Smadi and S. K. Al-Omari, Application of reproducing kernel hilbert space method for solving second-order fuzzy volterra integro-differential equations, Advances in Difference Equations, 2018 (2018), Paper No. 475, 15 pp. doi: 10.1186/s13662-018-1937-8.

[11]

F. T. Isfahani and R. Mokhtari, A numerical approach based on the reproducing kernel hilbert space for solving a class of boundary value optimal control problems, Iranian Journal of Science and Technology, Transactions A: Science, 42 (2018), 2309-2318.  doi: 10.1007/s40995-017-0421-8.

[12]

B. S. H. Kashkari and M. I. Syam, Reproducing kernel method for solving nonlinear fractional fredholm integrodifferential equation, Complexity, 2018 (2018), 7pp. doi: 10.1155/2018/2304858.

[13]

W. G. Kelley and A. C. Peterson, Difference Equations, Academic Press Inc., Boston, MA, 1991. An introduction with applications.

[14]

X. LiH. Li and B. Wu, Piecewise reproducing kernel method for linear impulsive delay differential equations with piecewise constant arguments, Applied Mathematics and Computation, 349 (2019), 304-313.  doi: 10.1016/j.amc.2018.12.054.

[15]

S. H. Sababe and A. Ebadia, Some properties of reproducing kernel banach and hilbert spaces, Sahand Communications in Mathematical Analysis, 12 (2018), 167-177. 

[16]

Y.-L. WangY. LiuZ. Li and H. zhang, Numerical solution of integro-differential equations of high-order fredholm by the simplified reproducing kernel method, International Journal of Computer Mathematics, 96 (2019), 585-593.  doi: 10.1080/00207160.2018.1455091.

show all references

References:
[1]

A. Akgül, On the solution of higher-order difference equations, Mathematical Methods in the Applied Sciences, 40 (2017), 6165-6171.  doi: 10.1002/mma.3870.

[2]

A. Akgül and E. Bonyah, Reproducing kernel hilbert space method for the solutions of generalized kuramoto–sivashinsky equation, Journal of Taibah University for Science, 13 (2019), 661-669. 

[3]

A. AkgülM. Inc and E. Karatas, Reproducing kernel functions for difference equations, Discrete & Continuous Dynamical Systems-Series S, 8 (2015), 1055-1064.  doi: 10.3934/dcdss.2015.8.1055.

[4]

O. A. Arqub, Computational algorithm for solving singular fredholm time-fractional partial integrodifferential equations with error estimates, Journal of Applied Mathematics and Computing, 59 (2019), 227-243.  doi: 10.1007/s12190-018-1176-x.

[5]

F. V. Atkinson, Discrete and Continuous Boundary Problems, Mathematics in Science and Engineering, Vol. 8. Academic Press, New York, 1964.

[6]

B. Azarnavid, M. Emamjome, M. Nabati and S. Abbasbandy, A reproducing kernel hilbert space approach in meshless collocation method, Computational and Applied Mathematics, 38 (2019), Art. 72, 19 pp. doi: 10.1007/s40314-019-0838-0.

[7]

M. Cui and Y. Lin, Nonlinear Numerical Analysis in the Reproducing Kernel Space, Nova Science Publishers Inc., New York, 2009.

[8]

M. De la Sen, The generalized beverton–holt equation and the control of populations, Applied Mathematical Modelling, 32 (2008), 2312-2328.  doi: 10.1016/j.apm.2007.09.007.

[9]

M. Foroutan, R. Asadi and A. Ebadian, A reproducing kernel hilbert space method for solving the nonlinear three-point boundary value problems, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 32 (2019), e2573. doi: 10.1002/jnm.2573.

[10]

G. N. Gumah, M. F. M. Naser, M. Al-Smadi and S. K. Al-Omari, Application of reproducing kernel hilbert space method for solving second-order fuzzy volterra integro-differential equations, Advances in Difference Equations, 2018 (2018), Paper No. 475, 15 pp. doi: 10.1186/s13662-018-1937-8.

[11]

F. T. Isfahani and R. Mokhtari, A numerical approach based on the reproducing kernel hilbert space for solving a class of boundary value optimal control problems, Iranian Journal of Science and Technology, Transactions A: Science, 42 (2018), 2309-2318.  doi: 10.1007/s40995-017-0421-8.

[12]

B. S. H. Kashkari and M. I. Syam, Reproducing kernel method for solving nonlinear fractional fredholm integrodifferential equation, Complexity, 2018 (2018), 7pp. doi: 10.1155/2018/2304858.

[13]

W. G. Kelley and A. C. Peterson, Difference Equations, Academic Press Inc., Boston, MA, 1991. An introduction with applications.

[14]

X. LiH. Li and B. Wu, Piecewise reproducing kernel method for linear impulsive delay differential equations with piecewise constant arguments, Applied Mathematics and Computation, 349 (2019), 304-313.  doi: 10.1016/j.amc.2018.12.054.

[15]

S. H. Sababe and A. Ebadia, Some properties of reproducing kernel banach and hilbert spaces, Sahand Communications in Mathematical Analysis, 12 (2018), 167-177. 

[16]

Y.-L. WangY. LiuZ. Li and H. zhang, Numerical solution of integro-differential equations of high-order fredholm by the simplified reproducing kernel method, International Journal of Computer Mathematics, 96 (2019), 585-593.  doi: 10.1080/00207160.2018.1455091.

Table 1.  Numerical results for Example 1
$x$ ES AS AE RE CPU time(s)
50 $1.125899907\times 10^{15}$ $1.125899907\times 10^{15}$ $0.0$ $0.0$ 0.078
100 $1.2676506\times 10^{30}$ $1.2676506\times 10^{30}$ $0.0$ $0.0$ 0.032
150 $1.427247693\times 10^{45}$ $1.42721\times 10^{45}$ $0.0$ $0.0000264095715$ 0.094
200 $1.606938044\times 10^{60}$ $1.606938044\times 10^{60}$ $0.0$ $0.0$ 0.031
250 $1.809251394\times 10^{75}$ $1.809251394\times 10^{75}$ $0.0$ $0.0$ 0.063
300 $2.037035976\times 10^{90}$ $2.037035976\times 10^{90}$ $0.0$ $0.0$ 0.078
$x$ ES AS AE RE CPU time(s)
50 $1.125899907\times 10^{15}$ $1.125899907\times 10^{15}$ $0.0$ $0.0$ 0.078
100 $1.2676506\times 10^{30}$ $1.2676506\times 10^{30}$ $0.0$ $0.0$ 0.032
150 $1.427247693\times 10^{45}$ $1.42721\times 10^{45}$ $0.0$ $0.0000264095715$ 0.094
200 $1.606938044\times 10^{60}$ $1.606938044\times 10^{60}$ $0.0$ $0.0$ 0.031
250 $1.809251394\times 10^{75}$ $1.809251394\times 10^{75}$ $0.0$ $0.0$ 0.063
300 $2.037035976\times 10^{90}$ $2.037035976\times 10^{90}$ $0.0$ $0.0$ 0.078
Table 2.  Numerical results for Example 2
$x$ ES AS AE RE CPU time(s)
$10$ $39.88315482$ $39.88315374$ $1.08\times 10^{-6}$ $2.707910156\times 10^{−8}$ 0.344
$20$ $19.99998093$ $19.99998111$ $1.8\times 10^{-7}$ $9.000008582\times 10^{-9}$ 0.421
$30$ $39.99999989$ $39.99999960$ $2.9\times 10^{-7}$ $7.25000002\times 10^{-9}$ 0.344
$40$ $20.00000000$ $19.99999620$ $3.8\times 10^{-6}$ $1.9\times 10^{-7}$ 0.390
$50$ $40.00000000$ $39.99999340$ $6.6\times 10^{-6}$ $1.65\times 10^{-7}$ 0.437
$100$ $20.00000000$ $19.99999843$ $1.57\times 10^{-6}$ $7.85\times 10^{-8}$ 0.405
$x$ ES AS AE RE CPU time(s)
$10$ $39.88315482$ $39.88315374$ $1.08\times 10^{-6}$ $2.707910156\times 10^{−8}$ 0.344
$20$ $19.99998093$ $19.99998111$ $1.8\times 10^{-7}$ $9.000008582\times 10^{-9}$ 0.421
$30$ $39.99999989$ $39.99999960$ $2.9\times 10^{-7}$ $7.25000002\times 10^{-9}$ 0.344
$40$ $20.00000000$ $19.99999620$ $3.8\times 10^{-6}$ $1.9\times 10^{-7}$ 0.390
$50$ $40.00000000$ $39.99999340$ $6.6\times 10^{-6}$ $1.65\times 10^{-7}$ 0.437
$100$ $20.00000000$ $19.99999843$ $1.57\times 10^{-6}$ $7.85\times 10^{-8}$ 0.405
Table 3.  Numerical results for Example 3
$x$ ES AS AE RE CPU
$10$ $0.004173544379$ $0.004173091$ $4.53379\times 10^{-7}$ $ 0.000108631647$ $0.046$
$20$ $0.000004074670078$ $0.000003549$ $5.25670078\times 10^{-7}$ $ 0.1290092371$ $0.078$
$30$ $3.979168669\times 10^{-9}$ $6.56\times 10^{-7}$ $ 6.520208313\times 10^{-7}$ $163.8585558$ $0.063$
$40$ $3.885906902\times 10^{-12}$ $1.66\times 10^{-7}$ $ 1.659961141\times 10^{-7}$ $42717.47067$ $0.031$
$50$ $3.794830960\times 10^{-15}$ $3.68\times 10^{-7}$ $ 3.679999962\times 10^{-7}$ $9.697401546\times 10^{7}$ $0.032$
$60$ $3.705889610\times 10^{-18}$ $9.72\times 10^{-7}$ $ 9.720000000\times 10^{-7}$ $2.622852007\times 10^{11}$ $0.078$
$70$ $3.70588961\times 10^{-18}$ $6.891\times 10^{-7}$ $ 6.891000000\times 10^{-7}$ $1.859472549\times 10^{11}$ $0.078$
$80$ $3.53421174\times 10^{-24}$ $1.675\times 10^{-7}$ $1.675\times 10^{-7}$ $4.739387799\times 10^{16}$ $0.078$
$90$ $3.451378652\times 10^{-27}$ $7.3\times 10^{-8}$ $7.3\times 10^{-8}$ $2.115096817\times 10^{19}$ $0.047$
$100$ $3.370486965\times 10^{-30}$ $0.00000104$ $0.000001048$ $ 3.109342985\times 10^{23}$ $0.031$
$x$ ES AS AE RE CPU
$10$ $0.004173544379$ $0.004173091$ $4.53379\times 10^{-7}$ $ 0.000108631647$ $0.046$
$20$ $0.000004074670078$ $0.000003549$ $5.25670078\times 10^{-7}$ $ 0.1290092371$ $0.078$
$30$ $3.979168669\times 10^{-9}$ $6.56\times 10^{-7}$ $ 6.520208313\times 10^{-7}$ $163.8585558$ $0.063$
$40$ $3.885906902\times 10^{-12}$ $1.66\times 10^{-7}$ $ 1.659961141\times 10^{-7}$ $42717.47067$ $0.031$
$50$ $3.794830960\times 10^{-15}$ $3.68\times 10^{-7}$ $ 3.679999962\times 10^{-7}$ $9.697401546\times 10^{7}$ $0.032$
$60$ $3.705889610\times 10^{-18}$ $9.72\times 10^{-7}$ $ 9.720000000\times 10^{-7}$ $2.622852007\times 10^{11}$ $0.078$
$70$ $3.70588961\times 10^{-18}$ $6.891\times 10^{-7}$ $ 6.891000000\times 10^{-7}$ $1.859472549\times 10^{11}$ $0.078$
$80$ $3.53421174\times 10^{-24}$ $1.675\times 10^{-7}$ $1.675\times 10^{-7}$ $4.739387799\times 10^{16}$ $0.078$
$90$ $3.451378652\times 10^{-27}$ $7.3\times 10^{-8}$ $7.3\times 10^{-8}$ $2.115096817\times 10^{19}$ $0.047$
$100$ $3.370486965\times 10^{-30}$ $0.00000104$ $0.000001048$ $ 3.109342985\times 10^{23}$ $0.031$
Table 4.  Numerical results for Example 4
$x$ ES AS AE RE CPU time(s)
$10$ $1.543083500\times 10^{7}$ $1.543083500\times 10^{7}$ $0.0$ $0.0 $ $0.063$
$20$ $1.890687562\times 10^{19}$ $1.890687562\times 10^{19}$ $0.0$ $ 0.0$ $0.140$
$30$ $2.996465452\times 10^{33}$ $2.996465452\times 10^{33}$ $0.0$ $ 0.0$ $0.094$
$40$ $1.209470191\times 10^{49}$ $1.209470191\times 10^{49}$ $0.0$ $ 0.0$ $0.031$
$50$ $1.240894842\times 10^{64}$ $1.240894842\times 10^{64}$ $0.0$ $ 0.0$ $0.016$
$60$ $4.047603113\times 10^{81}$ $4.047603113\times 10^{81}$ $0.0$ $ 0.0$ $0.125$
$70$ $6.766335157\times 10^{99}$ $6.766335157\times 10^{99}$ $0.0$ $ 0.0$ $0.046$
$80$ $4.604129154\times 10^{118}$ $4.604129154\times 10^{118}$ $0.0$ $0.0$ $0.078$
$90$ $1.072315597\times 10^{138}$ $1.072315597\times 10^{138}$ $0.0$ $0.0$ $0.109$
$100$ $7.467889258\times 10^{157}$ $7.467889258\times 10^{157}$ $0.0$ $0.0$ $0.047$
$x$ ES AS AE RE CPU time(s)
$10$ $1.543083500\times 10^{7}$ $1.543083500\times 10^{7}$ $0.0$ $0.0 $ $0.063$
$20$ $1.890687562\times 10^{19}$ $1.890687562\times 10^{19}$ $0.0$ $ 0.0$ $0.140$
$30$ $2.996465452\times 10^{33}$ $2.996465452\times 10^{33}$ $0.0$ $ 0.0$ $0.094$
$40$ $1.209470191\times 10^{49}$ $1.209470191\times 10^{49}$ $0.0$ $ 0.0$ $0.031$
$50$ $1.240894842\times 10^{64}$ $1.240894842\times 10^{64}$ $0.0$ $ 0.0$ $0.016$
$60$ $4.047603113\times 10^{81}$ $4.047603113\times 10^{81}$ $0.0$ $ 0.0$ $0.125$
$70$ $6.766335157\times 10^{99}$ $6.766335157\times 10^{99}$ $0.0$ $ 0.0$ $0.046$
$80$ $4.604129154\times 10^{118}$ $4.604129154\times 10^{118}$ $0.0$ $0.0$ $0.078$
$90$ $1.072315597\times 10^{138}$ $1.072315597\times 10^{138}$ $0.0$ $0.0$ $0.109$
$100$ $7.467889258\times 10^{157}$ $7.467889258\times 10^{157}$ $0.0$ $0.0$ $0.047$
Table 5.  Numerical results for Example 5
$x$ ES AS AE RE CPU time(s)
50 $1.258626873\times 10^{10}$ $1.258626873\times 10^{10}$ $0.0$ 0.0 2.465
100 $3.542248316\times 10^{20}$ $3.542248316\times 10^{20}$ $0.0$ 0.0 2.386
150 $9.969215980\times 10^{30}$ $9.969215980\times 10^{30}$ $0.0$ 0.0 2.512
200 $2.805711470\times 10^{41}$ $2.805711470\times 10^{41}$ $0.0$ 0.0 2.247
250 $7.896324908\times 10^{51}$ $7.896324908\times 10^{51}$ $0.0$ 0.0 2.340
300 $2.222322136\times 10^{62}$ $2.222322136\times 10^{62}$ $0.0$ 0.0 2.168
350 $6.254448414\times 10^{72}$ $6.254448414\times 10^{72}$ $0.0$ 0.0 2.247
400 $1.760236480\times 10^{83}$ $1.760236480\times 10^{83}$ $0.0$ 0.0 2.262
$x$ ES AS AE RE CPU time(s)
50 $1.258626873\times 10^{10}$ $1.258626873\times 10^{10}$ $0.0$ 0.0 2.465
100 $3.542248316\times 10^{20}$ $3.542248316\times 10^{20}$ $0.0$ 0.0 2.386
150 $9.969215980\times 10^{30}$ $9.969215980\times 10^{30}$ $0.0$ 0.0 2.512
200 $2.805711470\times 10^{41}$ $2.805711470\times 10^{41}$ $0.0$ 0.0 2.247
250 $7.896324908\times 10^{51}$ $7.896324908\times 10^{51}$ $0.0$ 0.0 2.340
300 $2.222322136\times 10^{62}$ $2.222322136\times 10^{62}$ $0.0$ 0.0 2.168
350 $6.254448414\times 10^{72}$ $6.254448414\times 10^{72}$ $0.0$ 0.0 2.247
400 $1.760236480\times 10^{83}$ $1.760236480\times 10^{83}$ $0.0$ 0.0 2.262
Table 6.  Numerical results for Example 6
$x$ ES AS AE CPU time(s)
$10$ $-1$ $-0.9999995$ $5\times 10^{-7}$ $0.094$
$20$ $1$ $0.999902593$ $9.7407\times 10^{-5}$ $0.109$
$30$ $0$ $0.000006701$ $6.701\times 10^{-7}$ $0.110$
$40$ $-1$ $-0.999991867$ $8.133\times 10^{-6}$ $0.062$
$50$ $1$ $0.999997854$ $2.146\times 10^{-6}$ $0.063$
$60$ $0$ $0.000008068$ $8.068\times 10^{-6}$ $0.15$
$70$ $-1$ $-0.999983411$ $1.6589\times 10^{-5}$ $0.062$
$80$ $1$ $0.999969194$ $3.0806\times 10^{-5}$ $0.062$
$90$ $0$ $0.000008144$ $8.144\times 10^{-6}$ $0.78$
$100$ $-1$ $-0.999917201$ $8.2799\times 10^{-5}$ $0.047$
$x$ ES AS AE CPU time(s)
$10$ $-1$ $-0.9999995$ $5\times 10^{-7}$ $0.094$
$20$ $1$ $0.999902593$ $9.7407\times 10^{-5}$ $0.109$
$30$ $0$ $0.000006701$ $6.701\times 10^{-7}$ $0.110$
$40$ $-1$ $-0.999991867$ $8.133\times 10^{-6}$ $0.062$
$50$ $1$ $0.999997854$ $2.146\times 10^{-6}$ $0.063$
$60$ $0$ $0.000008068$ $8.068\times 10^{-6}$ $0.15$
$70$ $-1$ $-0.999983411$ $1.6589\times 10^{-5}$ $0.062$
$80$ $1$ $0.999969194$ $3.0806\times 10^{-5}$ $0.062$
$90$ $0$ $0.000008144$ $8.144\times 10^{-6}$ $0.78$
$100$ $-1$ $-0.999917201$ $8.2799\times 10^{-5}$ $0.047$
[1]

Ali Akgül, Mustafa Inc, Esra Karatas. Reproducing kernel functions for difference equations. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1055-1064. doi: 10.3934/dcdss.2015.8.1055

[2]

Kaitlyn (Voccola) Muller. A reproducing kernel Hilbert space framework for inverse scattering problems within the Born approximation. Inverse Problems and Imaging, 2019, 13 (6) : 1327-1348. doi: 10.3934/ipi.2019058

[3]

Ying Lin, Rongrong Lin, Qi Ye. Sparse regularized learning in the reproducing kernel banach spaces with the $ \ell^1 $ norm. Mathematical Foundations of Computing, 2020, 3 (3) : 205-218. doi: 10.3934/mfc.2020020

[4]

Irene Benedetti, Luisa Malaguti, Valentina Taddei. Nonlocal problems in Hilbert spaces. Conference Publications, 2015, 2015 (special) : 103-111. doi: 10.3934/proc.2015.0103

[5]

Fritz Gesztesy, Rudi Weikard, Maxim Zinchenko. On a class of model Hilbert spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5067-5088. doi: 10.3934/dcds.2013.33.5067

[6]

Yury Neretin. The group of diffeomorphisms of the circle: Reproducing kernels and analogs of spherical functions. Journal of Geometric Mechanics, 2017, 9 (2) : 207-225. doi: 10.3934/jgm.2017009

[7]

Zhiming Li, Yujun Zhu. Entropies of commuting transformations on Hilbert spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5795-5814. doi: 10.3934/dcds.2020246

[8]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems and Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[9]

Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221

[10]

Hanbing Liu, Yongdong Huang, Chongjun Li. Weaving K-fusion frames in hilbert spaces. Mathematical Foundations of Computing, 2020, 3 (2) : 101-116. doi: 10.3934/mfc.2020008

[11]

Jin-Mun Jeong, Seong-Ho Cho. Identification problems of retarded differential systems in Hilbert spaces. Evolution Equations and Control Theory, 2017, 6 (1) : 77-91. doi: 10.3934/eect.2017005

[12]

Giuseppe Da Prato, Franco Flandoli. Some results for pathwise uniqueness in Hilbert spaces. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1789-1797. doi: 10.3934/cpaa.2014.13.1789

[13]

Guangcun Lu. The splitting lemmas for nonsmooth functionals on Hilbert spaces I. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2939-2990. doi: 10.3934/dcds.2013.33.2939

[14]

Bernd Hofmann, Barbara Kaltenbacher, Elena Resmerita. Lavrentiev's regularization method in Hilbert spaces revisited. Inverse Problems and Imaging, 2016, 10 (3) : 741-764. doi: 10.3934/ipi.2016019

[15]

Florian Noethen. Computing Covariant Lyapunov Vectors in Hilbert spaces. Journal of Computational Dynamics, 2021, 8 (3) : 325-352. doi: 10.3934/jcd.2021014

[16]

Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic and Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205

[17]

Qi Wang, Yue Zhou. Sets of zero-difference balanced functions and their applications. Advances in Mathematics of Communications, 2014, 8 (1) : 83-101. doi: 10.3934/amc.2014.8.83

[18]

Zhongliang Deng, Enwen Hu. Error minimization with global optimization for difference of convex functions. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1027-1033. doi: 10.3934/dcdss.2019070

[19]

Anton Petrunin. Harmonic functions on Alexandrov spaces and their applications. Electronic Research Announcements, 2003, 9: 135-141.

[20]

Feng Luo. Geodesic length functions and Teichmuller spaces. Electronic Research Announcements, 1996, 2: 34-41.

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (263)
  • HTML views (322)
  • Cited by (0)

Other articles
by authors

[Back to Top]