[1]
|
A. Y. Azi, R. Rao, F. Zhao, H. Huang, X. Wang and H. Liu, Impulse control of financial system with probabilistic delay feedback, Appl. Math. Mech., 40 (2019), 1409-1416.
doi: 10.21656/1000-0887.400059.
|
[2]
|
S. Bhalekar and V. Daftardar-Gejji, Synchronization of different fractional order chaotic systems using active control, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 3536-3546.
doi: 10.1016/j.cnsns.2009.12.016.
|
[3]
|
W. Chen, Dynamics and control of a financial system with time-delayed feedbacks, Chaos Soli. Frac., 37 (2008), 1198-1207.
doi: 10.1016/j.chaos.2006.10.016.
|
[4]
|
S. Chen and J. Lü, Synchronization of an uncertain unified chaotic system via adaptive control, Chaos, Soli. Frac., 14 (2002), 643-647.
doi: 10.1016/S0960-0779(02)00006-1.
|
[5]
|
S. Cheng, Complicated Science and Management, J. Nanchang Univ.(Human. Soc. Sci.), 3 (2000), 1-6.
|
[6]
|
C. Huang, L. Cai and J. Cao, Linear control for synchronization of a fractional-order time-delayed chaotic financial system, Chaos, Soli. Frac., 113 (2018), 326-332.
doi: 10.1016/j.chaos.2018.05.022.
|
[7]
|
D. Huang and H. Li, Theory and Method of Nonlinear Economics, Sichuan University Press, Chengdu, China, 1993.
|
[8]
|
T. Huang, C. Li and X. Liu, Synchronization of chaotic systems with delay using intermittent linear state feedback, Chaos, 18 (2008), 033122.
|
[9]
|
C. Huang, H. Zhang, J. Cao and H. Hu, Stability and hopf bifurcation of a delayed prey-predator model with disease in the predator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1950091, 23 Pages.
doi: 10.1142/S0218127419500913.
|
[10]
|
M. Krichman, E. D. Sontag and Y. Wang, Input-to-state stability, SIAM J. Control Optim., 39 (2000), 1874-1928.
doi: 10.1137/S0363012999365352.
|
[11]
|
X. Li and M. Bohner, An impulsive delay differential inequality and applications, Comp. Math. Appl., 64 (2012), 1875-1881.
doi: 10.1016/j.camwa.2012.03.013.
|
[12]
|
P. Li and X. Li, Input-to-state stability of nonlinear impulsive systems via Lyapunov method involving indefnite derivative, Math. Comput. Simu., 155 (2019), 314-323.
doi: 10.1016/j.matcom.2018.06.010.
|
[13]
|
X. Li, J. Shen and R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Appl. Math. Comput., 329 (2018), 14-22.
doi: 10.1016/j.amc.2018.01.036.
|
[14]
|
X. Li and X. Yang, Lyapunov stability analysis for nonlinear systems with state-dependent state delay, Automatica, 112 (2020), 108674.
doi: 10.1016/j.automatica.2019.108674.
|
[15]
|
X. Li, X. Yang and T. Huang, Persistence of delayed cooperative models: Impulsive control method, Appl. Math. Comput., 342 (2019), 130-146.
doi: 10.1016/j.amc.2018.09.003.
|
[16]
|
X. Li, Q. Zhu and D. O'Regan, $p$th Moment exponential stability of impulsive stochastic functional differential equations and application to control problems of NNs, J. Franklin Instit. EAM, 351 (2014), 4435–4456.
doi: 10.1016/j.jfranklin.2014.04.008.
|
[17]
|
B. Liu, Asymptotic behavior of solutions to a class of non-autonomous delay differential equations, J. Math. Anal. Appl., 446 (2017), 580-590.
doi: 10.1016/j.jmaa.2016.09.001.
|
[18]
|
J. Ma and Y. Chen, Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (Ⅰ), Appl. Math. Mech., 11 (2001), 1240-1251.
doi: 10.1023/A:1016313804297.
|
[19]
|
J. Ma and Y. Chen, Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (Ⅱ), Appl. Math. Mech., 12 (2001), 1375-1382.
doi: 10.1023/A:1022806003937.
|
[20]
|
C. Ning, Y. He, M. Wu, Q. Liu and J. She, Input-to-state stability of nonlinear systems based on an indefnite Lyapunov function, Syst. Control Lett., 61 (2012), 1254-1259.
doi: 10.1016/j.sysconle.2012.08.009.
|
[21]
|
C. Ning, Y. He, M. Wu and S. Zhou, Indefinite derivative Lyapunov-Krasovskii functional method for input to state stability of nonlinear systems with time-delay, Appl. Math. Comput., 270 (2015), 534-542.
doi: 10.1016/j.amc.2015.08.063.
|
[22]
|
Z. Pu and R. Rao, Delay-dependent LMI-based robust stability criterion for discrete and distributed time-delays Markovian jumping reaction-diffusion CGNNs under Neumann boundary value, Neurocomputing, 171 (2016), 1367-1374.
doi: 10.1016/j.neucom.2015.07.063.
|
[23]
|
R. Rao, Global Stability of a Markovian Jumping Chaotic Financial System with Partially Unknown Transition Rates under Impulsive Control Involved in the Positive Interest Rate, Mathematics, 7 (2019), 579.
doi: 10.3390/math7070579.
|
[24]
|
R. Rao, Delay-Dependent exponential stability for nonlinear reaction-diffusion uncertain Cohen-Grossberg neural networks with partially known transition rates via Hardy-Poincare inequality, Chin. Ann. Math. Ser.B, 35 (2014), 575-598.
doi: 10.1007/s11401-014-0839-7.
|
[25]
|
R. Rao, J. Hang and S. Zhong, Global exponential stability of reaction-diffusion BAM neural networks, J. Jilin Univ. (Sci. Ed.), 50 (2012), 1086-1090.
|
[26]
|
R. Rao, S. Zhong and Z. Pu, Fixed point and p-stability of T-S fuzzy impulsive reaction-diffusion dynamic neural networks with distributed delay via Laplacian semigroup, Neurocomputing, 335 (2019), 170-184.
doi: 10.1016/j.neucom.2019.01.051.
|
[27]
|
R. Rao, S. Zhong and X. Wang, Stochastic stability criteria with LMI conditions for Markovian jumping impulsive BAM neural networks with mode-dependent time-varying delays and nonlinear reaction-diffusion, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 258-273.
doi: 10.1016/j.cnsns.2013.05.024.
|
[28]
|
E. D. Sontag, Comments on integral variants of ISS, Syst. Control Lett., 34 (1998), 93-100.
doi: 10.1016/S0167-6911(98)00003-6.
|
[29]
|
J. Wang, X. Chen and L. Huang, The number and stability of limit cycles for planar piecewise linear systems of node-saddle type, J. Math. Anal. Appl., 469 (2019), 405-427.
doi: 10.1016/j.jmaa.2018.09.024.
|
[30]
|
J. Wang, C. Huang and L. Huang, Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type, Nonlinear Anal. HS, 33 (2019), 162-178.
doi: 10.1016/j.nahs.2019.03.004.
|
[31]
|
D. Yang, X. Li and J. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Anal. HS, 32 (2019), 294-305.
doi: 10.1016/j.nahs.2019.01.006.
|
[32]
|
X. Yang, X. Li, Q. Xi and P. Duan, Review of stability and stabilization for impulsive delayed systems, Math. Biosci. Engin., 15 (2018), 1495-1515.
doi: 10.3934/mbe.2018069.
|
[33]
|
R. Zhang, Bifurcation analysis for a kind of nonlinear finance system with delayed feedback and its application to control of chaos, J. Appl. Math., 2012 (2012), Article ID 316390, 1–18.
doi: 10.1155/2012/316390.
|
[34]
|
Y. Zhang and Q. Wang, Comment on "Synchronization of chaotic systems with delay using intermittent linear state feedback", Chaos, 18 (2008), 048102, 1p.
doi: 10.1063/1.3046536.
|
[35]
|
X. Zhao, Z. Li and S. Li, Synchronization of a chaotic finance system, Appl. Math. Comput., 217 (2011), 6031-6039.
doi: 10.1016/j.amc.2010.07.017.
|
[36]
|
M. Zhao and J. Wang, $H_\infty$ control of a chaotic finance system in the presence of external disturbance and input time-delay, Appl. Math. Comput., 233 (2014), 320-327.
doi: 10.1016/j.amc.2013.12.085.
|
[37]
|
H. Zhu, R. Rakkiyappan and X. Li, Delayed state-feedback control for stabilization of neural networks with leakage delay, Neural Net., 105 (2018), 249-255.
doi: 10.1016/j.neunet.2018.05.013.
|