[1]
|
M. A. Abdelkawy, M. A. Zaky, A. H. Bhrawy and D. Baleanu, Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model, Romanian Reports in Physics, 67 (2015), 773-791.
|
[2]
|
E. A.-B. Abdel-Salama, E. A. Yousif and M. A. El-Aasser, On the solution of the space-time fractional cubic nonlinear schrödinger equation, Physics, 2017.
|
[3]
|
L. Acedo, S. B. Yuste and K. Lindenberg, Reaction front in an $a+b\rightarrow c$ reaction-subdiffusion process, Phys. Rev. E, 69 (2004), 136-144.
|
[4]
|
A. Arnold, Numerically absorbing boundary conditions for quantum evolution equations, VLSI Design, 6 (1998), Article ID 38298, 7 pages.
doi: 10.1155/1998/38298.
|
[5]
|
A. Atangana and J. F. Gómez–Aguilar, Fractional derivatives with no-index law property: Application to chaos and statistics, Chaos, Solitons and Fractals, 114 (2018), 516-535.
doi: 10.1016/j.chaos.2018.07.033.
|
[6]
|
A. Atangana and J. F. Gómez-Aguilar, Numerical approximation of Riemann–Liouville definition of fractional derivative: From Riemann–Liouville to Atangana–Baleanu, Numer. Methods Partial Differential Equations, 34 (2018), 1502-1523.
doi: 10.1002/num.22195.
|
[7]
|
T. Bakkyaraj and R. Sahadevan, Approximate analytical solution of two coupled time fractional nonlinear schrödinger equations, Int. J. Appl. Comput. Math, 2 (2016), 113-135.
doi: 10.1007/s40819-015-0049-3.
|
[8]
|
E. Barkai, R. Metzler and J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61 (2000), 132-138.
doi: 10.1103/PhysRevE.61.132.
|
[9]
|
D.A. Benson, S. W. Wheatcraft and M. M. Meerschaert, The fractional-order governing equation of lévy motion, Water Resources Research, 36 (2000), 1413-1423.
doi: 10.1029/2000WR900032.
|
[10]
|
A. H. Bhrawya and M. A. Abdelkawy, A fully spectral collocation approximation for multi-dimensional fractional schrödinger equations, J. Comput. Phys., 294 (2015), 462-483.
doi: 10.1016/j.jcp.2015.03.063.
|
[11]
|
A. H. Bhrawy and M. A. Zaky, Numerical algorithm for the variable-order Caputo fractional functional differential equation, Nonlinear Dynam., 85 (2016), 1815-1823.
doi: 10.1007/s11071-016-2797-y.
|
[12]
|
A. H. Bhrawy and M. A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dynam., 80 (2015), 101-116.
doi: 10.1007/s11071-014-1854-7.
|
[13]
|
C. Canuto, M. Hussaini, A. Quarteroni and T. Zang, Spectral Methods in Fluid Dynamics, Springer, Berlin, 1998.
|
[14]
|
Y. Chen, L. Liu, B. Li and Y. Sun, Numerical solution for the variable order linear cable equation with Bernstein polynomials, Appl. Math. Comput., 238 (2014), 329-341.
doi: 10.1016/j.amc.2014.03.066.
|
[15]
|
C. F. M. Coimbra, Mechanics with variable-order differential operators, Ann. Phys, 12 (2003), 692-703.
doi: 10.1002/andp.200310032.
|
[16]
|
M. Dehghan and A. Shokri, A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions, Comput. Math. Appl., 54 (2007), 136-146.
doi: 10.1016/j.camwa.2007.01.038.
|
[17]
|
R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1982.
|
[18]
|
E. H. Doha, A. H. Bhrawy, M. A. Abdelkawy and RobertA. Van Gorder, Jacobi–Gauss–Lobatto collocation method for the numerical solution of $1+1$ nonlinear Schrödinger equations, J. Comput. Phys., 261 (2014), 244-255.
doi: 10.1016/j.jcp.2014.01.003.
|
[19]
|
M. D. Feit, J. A. Fleck Jr. and A. Steiger, Solution of the Schrödinger equation by a spectral method, Computational Physics, 47 (1982), 412-433.
doi: 10.1016/0021-9991(82)90091-2.
|
[20]
|
Z. Gao and S. Xie, Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional schrödinger equations, Appl. Numer. Math., 61 (2011), 593-614.
doi: 10.1016/j.apnum.2010.12.004.
|
[21]
|
J. F. Gómez-Aguilar and A. Atangana, New insight in fractional differentiation: Power, exponential decay and Mittag-Leffler laws and applications, The European Physical Journal Plus, 132 (2017), 1-13.
doi: 10.1140/epjp/i2017-11293-3.
|
[22]
|
J. F. Gómez-Aguilar, H. Yépez–Martínez, J. Torres-Jiménez, T. Córdova-Fraga, R. F. Escobar-Jiménez and V. H. Olivares-Peregrino, Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Adv. Difference Equ., 2017 (2017), Paper No. 68, 18 pp.
doi: 10.1186/s13662-017-1120-7.
|
[23]
|
S. H. M. Hamed, E. A. Yousif and A. I. Arbab, Analytic and approximate solutions of the space-time fractional Schrödinger equations by homotopy perturbation sumudu transform method, Abstr. Appl. Anal., 2014 (2014), Art. ID 863015, 13pp.
doi: 10.1155/2014/863015.
|
[24]
|
A. Hasegawa, Optical Solitons in Fibers, Berlin: Springer-Verlag, 1993.
doi: 10.1117/12.2308783.
|
[25]
|
M. A. E. Herzallah and K. A. Gepreel, Approximate solution to the time–space fractional cubic nonlinear Schrödinger equation, Appl. Math. Model., 36 (2012), 5678-5685.
doi: 10.1016/j.apm.2012.01.012.
|
[26]
|
M. H. Heydari, Wavelets Galerkin method for the fractional subdiffusion equation, Journal of Computational and Nonlinear Dynamics, 11 (2016), 061014, 7pp.
doi: 10.1115/1.4034391.
|
[27]
|
M. H. Heydari, A new direct method based on the Chebyshev cardinal functions for variable-order fractional optimal control problems, J. Franklin Inst., 355 (2018), 4970-4995.
doi: 10.1016/j.jfranklin.2018.05.025.
|
[28]
|
M. H. Heydari and Z. Avazzadeh, Legendre wavelets optimization method for variable-order fractional Poisson equation, Chaos, Solitons and Fractals, 112 (2018), 180-190.
doi: 10.1016/j.chaos.2018.04.028.
|
[29]
|
M. H. Heydari and Z. Avazzadeh, An operational matrix method for solving variable-order fractional biharmonic equation, Comput. Appl. Math., 37 (2018), 4397-4411.
doi: 10.1007/s40314-018-0580-z.
|
[30]
|
M. H. Heydari and Z. Avazzadeh, A new wavelet method for variable-order fractional optimal control problems, Asian J. Control, 20 (2018), 1804-1817.
doi: 10.1002/asjc.1687.
|
[31]
|
M. H. Heydari, Z. Avazzadeh and M. Farzi Haromi, A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation, Appl. Math. Comput., 341 (2019), 215-228.
doi: 10.1016/j.amc.2018.08.034.
|
[32]
|
M. H. Heydari, M. R. Hooshmandasl, C. Cattani and G. Hariharan, An optimization wavelet method for multi variable-order fractional differential equations, Fund. Inform., 151 (2017), 255-273.
doi: 10.3233/FI-2017-1491.
|
[33]
|
M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini and C. Cattani, Wavelets method for the time fractional diffusion-wave equation, Phys. Lett. A, 379 (2015), 71-76.
doi: 10.1016/j.physleta.2014.11.012.
|
[34]
|
M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini and C. Cattani, Wavelets method for solving fractional optimal control problems, Appl. Math. Comput., 286 (2016), 139-154.
doi: 10.1016/j.amc.2016.04.009.
|
[35]
|
M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini and F. Feriedouni, Two-dimensional Legendre wavelets for solving fractional Poisson equation with Dirichlet boundary conditions, Eng. Anal. Bound. Elem., 37 (2013), 1331-1338.
doi: 10.1016/j.enganabound.2013.07.002.
|
[36]
|
M. H. Heydari, M. R. Hooshmandasl and F. Mohammadi, Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions, Appl. Math. Comput., 234 (2014), 267-276.
doi: 10.1016/j.amc.2014.02.047.
|
[37]
|
M. H. Heydari, M. R. Hooshmandasl and F. Mohammadi, Two-dimensional Legendre wavelets for solving time-fractional telegraph equation, Adv. Appl. Math. Mech., 6 (2014), 247-260.
doi: 10.4208/aamm.12-m12132.
|
[38]
|
M. Hosseininia, M. H. Heydari, R. Roohi and Z. Avazzadeh, A computational wavelet method for variable-order fractional model of dual phase lag bioheat equation, J. Comput. Phys., 395 (2019), 1-18.
doi: 10.1016/j.jcp.2019.06.024.
|
[39]
|
M. Hosseininia, M. H. Heydari, Z. Avazzadeh and F. M. Maalek Ghaini, Two-dimensional Legendre wavelets for solving variable-order fractional nonlinear advection-diffusion equation with variable coefficients, Int. J. Nonlinear Sci. Numer. Simul., 19 (2018), 793-802.
doi: 10.1515/ijnsns-2018-0168.
|
[40]
|
M. Hosseininia, M. H. Heydari, F. M. Maalek Ghaini and Z. Avazzadeh, A wavelet method to solve nonlinear variable-order time fractional 2D Klein–Gordon equation, Comput. Math. Appl., 78 (2019), 3713-3730.
doi: 10.1016/j.camwa.2019.06.008.
|
[41]
|
J. Hu, J. Xin and H. Lu, The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition, Computers and Mathematics with Applications, 62 (2011), 1510-1521.
doi: 10.1016/j.camwa.2011.05.039.
|
[42]
|
M. Levy, Parabolic Equation Methods for Electromagnetic Wave Propagation, IEE Electromagnetic Waves Series, 45. Institution of Electrical Engineers (IEE), London, 2000.
doi: 10.1049/PBEW045E.
|
[43]
|
X. Li and B. Wu, A numerical technique for variable fractional functional boundary value problems, Appl. Math. Lett., 43 (2015), 108-113.
doi: 10.1016/j.aml.2014.12.012.
|
[44]
|
J. Lin, Y. Hong, L.-H. Kuo and C.-S. Liu, Numerical simulation of 3D nonlinear Schrödinger equations by using the localized method of approximate particular solutions, Eng. Anal. Bound. Elem., 78 (2017), 20-25.
doi: 10.1016/j.enganabound.2017.02.002.
|
[45]
|
R. Lin, F. Liu, V. Anh and I. Turner, Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput., 212 (2009), 435-445.
doi: 10.1016/j.amc.2009.02.047.
|
[46]
|
F. Liu, V. Anh and I. Turner, Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math., 166 (2004), 209-219.
doi: 10.1016/j.cam.2003.09.028.
|
[47]
|
R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A, 278 (2000), 107-125.
doi: 10.1016/S0378-4371(99)00503-8.
|
[48]
|
B. P. Moghaddam, J. A. T. Machado and H. Behforooz, An integro quadratic spline approach for a class of variable-order fractional initial value problems, Chaos Solitons Fractals, 102 (2017), 354-360.
doi: 10.1016/j.chaos.2017.03.065.
|
[49]
|
A. Mohebbi and M. Dehghan, The use of compact boundary value method for the solution of two-dimensional Schrödinger equation, J. Comput. Appl. Math., 225 (2009), 124-134.
doi: 10.1016/j.cam.2008.07.008.
|
[50]
|
B. Parsa Moghaddam and J. A. T. Machado, Extended algorithms for approximating variable order fractional derivatives with applications, J. Sci. Comput., 71 (2017), 1351-1374.
doi: 10.1007/s10915-016-0343-1.
|
[51]
|
L. E. S. Ramirez and C. F. M. Coimbra, On the variable order dynamics of the nonlinear wake caused by a sedimenting particle, Phys. D, 240 (2011), 1111-1118.
doi: 10.1016/j.physd.2011.04.001.
|
[52]
|
K. M. Saad, M. M. Khader, J. F. Gómez–Aguilar and D. Baleanu, Numerical solutions of the fractional Fisher's type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods, Chaos, 29 (2019), 023116, 9pp.
doi: 10.1063/1.5086771.
|
[53]
|
A. I. Saichev and G. M. Zaslavsky, Fractional kinetic equations: Solutions and applications., Chaos, 7 (1997), 753.
doi: 10.1063/1.166272.
|
[54]
|
S. G. Samko, Fractional integration and differentiation of variable order, Anal. Math., 21 (1995), 213-236.
|
[55]
|
S. Samko, Fractional integration and differentiation of variable order: An overview, Nonlinear Dynam., 71 (2013), 653-662.
doi: 10.1007/s11071-012-0485-0.
|
[56]
|
S. G. Samko and B. Ross, Integration and differentiation to a variable fractional order, Integral Transform Spec. Funct., 1 (1993), 277-300.
doi: 10.1080/10652469308819027.
|
[57]
|
E. Scalas, R. Gorenflo and F. Mainardi, Fractional calculus and continuous-time finance, Phys. A, 284 (2000), 376-384.
doi: 10.1016/S0378-4371(00)00255-7.
|
[58]
|
A. Scott, Nonlinear Science: Emergence and Dynamics of Coherent Structures, Oxford University Press, Oxford, 1999.
|
[59]
|
S. Shen, F. Liu, J. Chen, I. Turner and V. Anh, Numerical techniques for the variable order time fractional diffusion equation, Appl. Math. Comput., 218 (2012), 10861-10870.
doi: 10.1016/j.amc.2012.04.047.
|
[60]
|
E. Shivanian and A. Jafarabadi, An efficient numerical technique for solution of two-dimensional cubic nonlinear Schrödinger equation with error analysis, Eng. Anal. Bound. Elem., 83 (2017), 74-86.
doi: 10.1016/j.enganabound.2017.07.012.
|
[61]
|
J.-J. Shyu, S.-C. Pei and C.-H. Chan, An iterative method for the design of variable fractional-order FIR differintegrators, Signal Process., 89 (2009), 320-327.
doi: 10.1016/j.sigpro.2008.09.009.
|
[62]
|
H. G. Sun, W. Chen, H. Wei and Y. Q. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J. Spec. Top., 193 (2011), Article number: 185.
doi: 10.1140/epjst/e2011-01390-6.
|
[63]
|
F. D. Tappert, The parabolic approximation method, Wave Propagation and Underwater Acoustics (Workshop, Mystic, Conn., 1974), Lecture Notes in Physics, Springer, Berlin, 70 (1977), 224–287.
|
[64]
|
A. Tayebi, Y. Shekari and M. H. Heydari, A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation, J. Comput. Phys., 340 (2017), 655-669.
doi: 10.1016/j.jcp.2017.03.061.
|
[65]
|
K. Y and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, New York, 2003.
|
[66]
|
S. Yaghoobi, B. P. Moghaddam and K. Ivaz, An efficient cubic spline approximation for variable-order fractional differential equations with time delay, Nonlinear Dynam., 87 (2017), 815-826.
doi: 10.1007/s11071-016-3079-4.
|
[67]
|
H. Yépez-Martínez and J. F. Gómez-Aguilar, Numerical and analytical solutions of nonlinear differential equations involving fractional operators with power and Mittag-Leffler kernel, Math. Model. Nat. Phenom., 13 (2018), 17pp.
doi: 10.1051/mmnp/2018002.
|
[68]
|
F. Yin, J. Song and F. Lu, A coupled method of Laplace transform and Legendre wavelets for nonlinear Klein-Gordon equations, Math. Methods Appl. Sci., 37 (2014), 781-792.
doi: 10.1002/mma.2834.
|
[69]
|
S. B. Yuste and K. Lindenberg, Subdiffusion-limited A + A reactions, Phys. Rev. Lett, 87 (2001), 118301.
doi: 10.1103/PhysRevLett.87.118301.
|
[70]
|
M. Zayernouri and G. E. Karniadakis, Fractional spectral collocation methods for linear and nonlinear variable order FPDEs, J. Comput. Phys., 293 (2015), 312-338.
doi: 10.1016/j.jcp.2014.12.001.
|