January  2021, 14(1): 1-16. doi: 10.3934/dcdss.2020302

Optimal laminates in single-slip elastoplasticity

1. 

Universität Bonn, Bonn, D-53115, Germany

2. 

Universität Regensburg, Regensburg, D-93053, Germany

* Corresponding author: Georg Dolzmann

Received  March 2019 Revised  August 2019 Published  January 2021 Early access  March 2020

Fund Project: The first author is supported by DFG SFB 1060 "The mathematics of emergent effects", project 211504053/A05

Recent progress in the mathematical analysis of variational models for the plastic deformation of crystals in a geometrically nonlinear setting is discussed. The focus lies on the first time-step and on situations where only one slip system is active, in two spatial dimensions. The interplay of invariance under finite rotations and plastic deformation leads to the emergence of microstructures, which can be analyzed in the framework of relaxation theory using the theory of quasiconvexity. A class of elastoplastic energies with one active slip system that converge asymptotically to a model with rigid elasticity is presented and the interplay between relaxation and asymptotics is investigated.

Citation: Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302
References:
[1]

N. AlbinS. Conti and G. Dolzmann, Infinite-order laminates in a model in crystal plasticity, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 685-708.  doi: 10.1017/S0308210508000127.

[2]

J. M. BallB. Kirchheim and J. Kristensen, Regularity of quasiconvex envelopes, Calc. Var. Partial Differential Equations, 11 (2000), 333-359.  doi: 10.1007/s005260000041.

[3]

S. BartelsC. CarstensenK. Hackl and U. Hoppe, Effective relaxation for microstructure simulations: Algorithms and applications, Comput. Methods Appl. Mech. Engrg., 193 (2004), 5143-5175.  doi: 10.1016/j.cma.2003.12.065.

[4]

S. Bartels, Linear convergence in the approximation of rank-one convex envelopes, M2AN Math. Model. Numer. Anal., 38 (2004), 811-820.  doi: 10.1051/m2an:2004040.

[5]

S. Bartels, Reliable and efficient approximation of polyconvex envelopes, SIAM J. Numer. Anal., 43 (2005), 363-385.  doi: 10.1137/S0036142903428840.

[6]

S. Bartels and T. Roubíček, Linear-programming approach to nonconvex variational problems, Numer. Math., 99 (2004), 251-287.  doi: 10.1007/s00211-004-0549-2.

[7]

C. Carstensen, Nonconvex energy minimization and relaxation in computational material science, in IUTAM Symposium on Computational Mechanics of Solid {M}aterials at Large {S}trains (Stuttgart, 2001), Solid Mech. Appl., 108, Kluwer Acad. Publ., Dordrecht, 2003, 3–20. doi: 10.1007/978-94-017-0297-3_1.

[8]

C. CarstensenS. Conti and A. Orlando, Mixed analytical-numerical relaxation in finite single-slip crystal plasticity, Contin. Mech. Thermodyn., 20 (2008), 275-301.  doi: 10.1007/s00161-008-0082-0.

[9]

C. Carstensen and P. Plecháč, Numerical analysis of compatible phase transitions in elastic solids, SIAM J. Numer. Anal., 37 (2000), 2061-2081.  doi: 10.1137/S0036142998337697.

[10]

C. Carstensen, Numerical analysis of microstructure, in Theory and Numerics of Differential Equations (Durham, 2000), Universitext, Springer, Berlin, 2001, 59–126. doi: 10.1007/978-3-662-04354-7_2.

[11]

C. CarstensenK. Hackl and A. Mielke, Non-convex potentials and microstructures in finite-strain plasticity, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 458 (2002), 299-317.  doi: 10.1098/rspa.2001.0864.

[12]

C. Carstensen and S. Müller, Local stress regularity in scalar nonconvex variational problems, SIAM J. Math. Anal., 34 (2002), 495-509.  doi: 10.1137/S0036141001396436.

[13]

C. Carstensen and P. Plecháč, Numerical solution of the scalar double-well problem allowing microstructure, Math. Comp., 66 (1997), 997-1026.  doi: 10.1090/S0025-5718-97-00849-1.

[14]

C. Carstensen and T. Roubíček, Numerical approximation of Young measures in non-convex variational problems, Numer. Math., 84 (2000), 395-415.  doi: 10.1007/s002110050003.

[15]

M. Chipot, Numerical analysis of oscillations in nonconvex problems, Numer. Math., 59 (1991), 747-767.  doi: 10.1007/BF01385808.

[16]

M. Chipot and S. Müller, Sharp energy estimates for finite element approximations of non-convex problems, in Variations of Domain and Free-Boundary Problems in Solid Mechanics (Paris, 1997), Solid Mech. Appl., 66, Kluwer Acad. Publ., Dordrecht, 1999,317–325. doi: 10.1007/978-94-011-4738-5_38.

[17]

M. Cicalese and N. Fusco, A note on relaxation with constraints on the determinant, ESAIM: Control Optim. Calc. Var., 25 (2019), 15pp. doi: 10.1051/cocv/2018030.

[18]

S. Conti, Relaxation of single-slip single-crystal plasticity with linear hardening, in Multiscale Materials Modeling, Fraunhofer IRB, Freiburg, 2006, 30–35.

[19]

S. ContiA. DeSimone and G. Dolzmann, Soft elastic response of stretched sheets of nematic elastomers: A numerical study, J. Mech. Phys. Solids, 50 (2002), 1431-1451.  doi: 10.1016/S0022-5096(01)00120-X.

[20]

S. ContiG. Dolzmann and C. Klust, Relaxation of a class of variational models in crystal plasticity, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 1735-1742.  doi: 10.1098/rspa.2008.0390.

[21]

S. ContiG. Dolzmann and C. Kreisbeck, Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity, SIAM J. Math. Anal., 43 (2011), 2337-2353.  doi: 10.1137/100810320.

[22]

S. Conti and G. Dolzmann, Relaxation of a model energy for the cubic to tetragonal phase transformation in two dimensions, Math. Models. Methods Appl. Sci., 24 (2014), 2929-2942.  doi: 10.1142/S0218202514500419.

[23]

S. Conti and G. Dolzmann, Quasiconvex envelope for a model of finite elastoplasticity with one active slip system and linear hardening, Continuum Mech. Thermodyn. (2019). doi: 10.1007/s00161-019-00825-8.

[24]

S. Conti and G. Dolzmann, On the theory of relaxation in nonlinear elasticity with constraints on the determinant, Arch. Ration. Mech. Anal., 217 (2015), 413-437.  doi: 10.1007/s00205-014-0835-9.

[25]

S. Conti and G. Dolzmann, Relaxation in crystal plasticity with three active slip systems, Contin. Mech. Thermodyn., 28 (2016), 1477-1494.  doi: 10.1007/s00161-015-0490-x.

[26]

S. Conti and G. Dolzmann, An adaptive relaxation algorithm for multiscale problems and application to nematic elastomers, J. Mech. Phys. Solids, 113 (2018), 126-143.  doi: 10.1016/j.jmps.2018.02.001.

[27]

S. Conti and G. Dolzmann, Numerical study of microstructures in single-slip finite elastoplasticity, J. Optim. Theory Appl., 184 (2020), 43-60.  doi: 10.1007/s10957-018-01460-0.

[28]

S. ContiG. Dolzmann and C. Kreisbeck, Relaxation of a model in finite plasticity with two slip systems, Math. Models Methods Appl. Sci., 23 (2013), 2111-2128.  doi: 10.1142/S0218202513500279.

[29]

S. Conti and F. Theil, Single-slip elastoplastic microstructures, Arch. Ration. Mech. Anal., 178 (2005), 125-148.  doi: 10.1007/s00205-005-0371-8.

[30]

B. Dacorogna, Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, 78, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-51440-1.

[31]

G. Dal Maso, An Introduction to {$\Gamma$-Convergence}, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser, Boston, 1993. doi: 10.1007/978-1-4612-0327-8.

[32]

E. Davoli and G. A. Francfort, A critical revisiting of finite elasto-plasticity, SIAM J. Math. Anal., 47 (2015), 526-565.  doi: 10.1137/140965090.

[33]

E. De Giorgi, Sulla convergenza di alcune successioni d'integrali del tipo dell'area, Rend. Mat. (6), 8 (1975), 277-294. 

[34]

A. DeSimone and G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of $\rm SO(3)$-invariant energies, Arch. Ration. Mech. Anal., 161 (2002), 181-204.  doi: 10.1007/s002050100174.

[35]

E. D. Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 58 (1975), 842-850. 

[36]

K. HacklS. Heinz and A. Mielke, A model for the evolution of laminates in finite-strain elastoplasticity, ZAMM Z. Angew. Math. Mech., 92 (2012), 888-909.  doi: 10.1002/zamm.201100155.

[37]

W. Han and B. D. Reddy, phPlasticity, in Mathematical Theory and Numerical Analysis, Interdisciplinary Applied Mathematics, 9, Springer, New York, 2013. doi: 10.1007/978-1-4614-5940-8.

[38]

E. Kröner, Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen, Arch. Rational Mech. Anal., 4 (1960), 273-334.  doi: 10.1007/BF00281393.

[39]

M. Kružík and T. Roubíček, Optimization problems with concentration and oscillation effects: Relaxation theory and numerical approximation, Numer. Funct. Anal. Optim., 20 (1999), 511-530.  doi: 10.1080/01630569908816908.

[40]

G. Lauteri and S. Luckhaus, An energy estimate for dislocation configurations and the emergence of Cosserat-type structures in metal plasticity, preprint, arXiv: 1608.06155.

[41]

H. Le Dret and A. Raoult, The quasiconvex envelope of the Saint Venant-Kirchhoff stored energy function, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1179-1192.  doi: 10.1017/S0308210500030456.

[42]

E. H. Lee, Elastic-plastic deformation at finite strains, J. Appl. Mech., 36 (1969), 1-6.  doi: 10.21236/AD0678483.

[43]

S. Luckhaus and L. Mugnai, On a mesoscopic many-body {H}amiltonian describing elastic shears and dislocations, Contin. Mech. Thermodyn., 22 (2010), 251-290.  doi: 10.1007/s00161-010-0142-0.

[44]

S. Luckhaus and J. Wohlgemuth, Study of a model for reference-free plasticity, preprint, arXiv: 1408.1355.

[45]

M. Luskin, On the computation of crystalline microstructure, in Acta Numerica, 1996 , Acta Numer., 5, Cambridge Univ. Press, Cambridge, 1996, 191-257. doi: 10.1017/S0962492900002658.

[46]

A. Mainik and A. Mielke, Global existence for rate-independent gradient plasticity at finite strain, J. Nonlinear Sci., 19 (2009), 221-248.  doi: 10.1007/s00332-008-9033-y.

[47]

C. Miehe, On the representation of Prandtl-Reuss tensors within the framework of multiplicative elastoplasticity, Int. J. Plasticity, 10 (1994), 609-621.  doi: 10.1016/0749-6419(94)90025-6.

[48]

C. MieheM. Lambrecht and E. Gürses, Analysis of material instabilities in inelastic solids by incremental energy minimization and relaxation methods: Evolving deformation microstructures in finite plasticity, J. Mech. Phys. Solids, 52 (2004), 2725-2769.  doi: 10.1016/j.jmps.2004.05.011.

[49]

C. Miehe and E. Stein, A canonical model of multiplicative elasto-plasticity: Formulation and aspects of the numerical implementation, Europ. J. Mech. A/Solids, 11 (1992), 25-43. 

[50]

C. Miehe and M. Lambrecht, Analysis of microstructure development in shearbands by energy relaxation of incremental stress potentials: Large-strain theory for standard dissipative solids, Internat. J. Numer. Methods Engrg., 58 (2003), 1-41.  doi: 10.1002/nme.726.

[51]

A. Mielke, Energetic formulation of multiplicative elasto-plasticity using dissipation distances, Contin. Mech. Thermodyn., 15 (2003), 351-382.  doi: 10.1007/s00161-003-0120-x.

[52]

A. Mielke and S. Müller, Lower semicontinuity and existence of minimizers in incremental finite-strain elastoplasticity, ZAMM Z. Angew. Math. Mech., 86 (2006), 233–250, . doi: 10.1002/zamm.200510245.

[53]

A. MielkeR. Rossi and G. Savaré, Global existence results for viscoplasticity at finite strain, Arch. Ration. Mech. Anal., 227 (2018), 423-475.  doi: 10.1007/s00205-017-1164-6.

[54]

A. Mielke and T. Roubíček, Rate-independent systems, in Theory and Application, Applied Mathematical Sciences, 193, Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.

[55]

A. Mielke and T. Roubíček, Rate-independent elastoplasticity at finite strains and its numerical approximation, Math. Models Methods Appl. Sci., 26 (2016), 2203-2236.  doi: 10.1142/S0218202516500512.

[56]

A. Mielke and U. Stefanelli, Linearized plasticity is the evolutionary $\Gamma$-limit of finite plasticity, J. Eur. Math. Soc. (JEMS), 15 (2013), 923-948.  doi: 10.4171/JEMS/381.

[57]

A. MielkeF. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Ration. Mech. Anal., 162 (2002), 137-177.  doi: 10.1007/s002050200194.

[58]

J. Moreau, Sur les lois de frottement, de plasticité et de viscosité, Comptes Rendus de l'Académie des Sciences, 271 (1970), 608-611. 

[59]

J. C. B. Morrey, Multiple Integrals in the Calculus of Variations, Die Grundlehren der mathematischen Wissenschaften, Band, 130, Springer-Verlag New York, Inc., New York, 1966. doi: 10.1007/978-3-540-69952-1.

[60]

S. Müller, Variational models for microstructure and phase transitions, in Calculus of Variations and Geometric Evolution Problems, Lecture Notes in Math., 1713, Springer, Berlin, 1999, 85–210. doi: 10.1007/BFb0092670.

[61]

S. Müller and V. Šverák, Convex integration with constraints and applications to phase transitions and partial differential equations, J. Eur. Math. Soc. (JEMS), 1 (1999), 393-442.  doi: 10.1007/s100970050012.

[62]

S. Müller, L. Scardia and C. I. Zeppieri, Gradient theory for geometrically nonlinear plasticity via the homogenization of dislocations, in Analysis and Computation of Microstructure in Finite Plasticity, Lect. Notes Appl. Comput. Mech., 78, Springer, Cham, 2015,175–204. doi: 10.1007/978-3-319-18242-1_7.

[63]

M. Ortiz and E. A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids, 47 (1999), 397-462.  doi: 10.1016/S0022-5096(97)00096-3.

[64]

C. Reina and S. Conti, Kinematic description of crystal plasticity in the finite kinematic framework: A micromechanical understanding of ${F} = {F}^e{F}^p$, J. Mech. Phys. Solids, 67 (2014), 40-61.  doi: 10.1016/j.jmps.2014.01.014.

[65]

C. Reina and S. Conti, Incompressible inelasticity as an essential ingredient for the validity of the kinematic decomposition $F = F^eF^i$, J. Mech. Phys. Solids, 107 (2017), 322-342.  doi: 10.1016/j.jmps.2017.07.004.

[66]

T. Roubíček, Relaxation in Optimization Theory and Variational Calculus, De Gruyter Series in Nonlinear Analysis and Applications, 4, Walter de Gruyter & Co., Berlin, 1997. doi: 10.1515/9783110811919.

[67]

T. Roubíček, Numerical techniques in relaxed optimization problems, in Robust Optimization-Directed Design, Nonconvex Optim. Appl., 81, Springer, New York, 2006,157–178. doi: 10.1007/0-387-28654-3_8.

[68]

J. C. Simo, A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. I. Continuum formulation, Comput. Methods Appl. Mech. Engrg., 66 (1988), 199-219.  doi: 10.1016/0045-7825(88)90076-X.

[69]

J. C. Simo and M. Ortiz, A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations, Comput. Methods. Appl. Mech. Engrg., 49 (1985), 221-245.  doi: 10.1016/0045-7825(85)90061-1.

show all references

References:
[1]

N. AlbinS. Conti and G. Dolzmann, Infinite-order laminates in a model in crystal plasticity, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 685-708.  doi: 10.1017/S0308210508000127.

[2]

J. M. BallB. Kirchheim and J. Kristensen, Regularity of quasiconvex envelopes, Calc. Var. Partial Differential Equations, 11 (2000), 333-359.  doi: 10.1007/s005260000041.

[3]

S. BartelsC. CarstensenK. Hackl and U. Hoppe, Effective relaxation for microstructure simulations: Algorithms and applications, Comput. Methods Appl. Mech. Engrg., 193 (2004), 5143-5175.  doi: 10.1016/j.cma.2003.12.065.

[4]

S. Bartels, Linear convergence in the approximation of rank-one convex envelopes, M2AN Math. Model. Numer. Anal., 38 (2004), 811-820.  doi: 10.1051/m2an:2004040.

[5]

S. Bartels, Reliable and efficient approximation of polyconvex envelopes, SIAM J. Numer. Anal., 43 (2005), 363-385.  doi: 10.1137/S0036142903428840.

[6]

S. Bartels and T. Roubíček, Linear-programming approach to nonconvex variational problems, Numer. Math., 99 (2004), 251-287.  doi: 10.1007/s00211-004-0549-2.

[7]

C. Carstensen, Nonconvex energy minimization and relaxation in computational material science, in IUTAM Symposium on Computational Mechanics of Solid {M}aterials at Large {S}trains (Stuttgart, 2001), Solid Mech. Appl., 108, Kluwer Acad. Publ., Dordrecht, 2003, 3–20. doi: 10.1007/978-94-017-0297-3_1.

[8]

C. CarstensenS. Conti and A. Orlando, Mixed analytical-numerical relaxation in finite single-slip crystal plasticity, Contin. Mech. Thermodyn., 20 (2008), 275-301.  doi: 10.1007/s00161-008-0082-0.

[9]

C. Carstensen and P. Plecháč, Numerical analysis of compatible phase transitions in elastic solids, SIAM J. Numer. Anal., 37 (2000), 2061-2081.  doi: 10.1137/S0036142998337697.

[10]

C. Carstensen, Numerical analysis of microstructure, in Theory and Numerics of Differential Equations (Durham, 2000), Universitext, Springer, Berlin, 2001, 59–126. doi: 10.1007/978-3-662-04354-7_2.

[11]

C. CarstensenK. Hackl and A. Mielke, Non-convex potentials and microstructures in finite-strain plasticity, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 458 (2002), 299-317.  doi: 10.1098/rspa.2001.0864.

[12]

C. Carstensen and S. Müller, Local stress regularity in scalar nonconvex variational problems, SIAM J. Math. Anal., 34 (2002), 495-509.  doi: 10.1137/S0036141001396436.

[13]

C. Carstensen and P. Plecháč, Numerical solution of the scalar double-well problem allowing microstructure, Math. Comp., 66 (1997), 997-1026.  doi: 10.1090/S0025-5718-97-00849-1.

[14]

C. Carstensen and T. Roubíček, Numerical approximation of Young measures in non-convex variational problems, Numer. Math., 84 (2000), 395-415.  doi: 10.1007/s002110050003.

[15]

M. Chipot, Numerical analysis of oscillations in nonconvex problems, Numer. Math., 59 (1991), 747-767.  doi: 10.1007/BF01385808.

[16]

M. Chipot and S. Müller, Sharp energy estimates for finite element approximations of non-convex problems, in Variations of Domain and Free-Boundary Problems in Solid Mechanics (Paris, 1997), Solid Mech. Appl., 66, Kluwer Acad. Publ., Dordrecht, 1999,317–325. doi: 10.1007/978-94-011-4738-5_38.

[17]

M. Cicalese and N. Fusco, A note on relaxation with constraints on the determinant, ESAIM: Control Optim. Calc. Var., 25 (2019), 15pp. doi: 10.1051/cocv/2018030.

[18]

S. Conti, Relaxation of single-slip single-crystal plasticity with linear hardening, in Multiscale Materials Modeling, Fraunhofer IRB, Freiburg, 2006, 30–35.

[19]

S. ContiA. DeSimone and G. Dolzmann, Soft elastic response of stretched sheets of nematic elastomers: A numerical study, J. Mech. Phys. Solids, 50 (2002), 1431-1451.  doi: 10.1016/S0022-5096(01)00120-X.

[20]

S. ContiG. Dolzmann and C. Klust, Relaxation of a class of variational models in crystal plasticity, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 1735-1742.  doi: 10.1098/rspa.2008.0390.

[21]

S. ContiG. Dolzmann and C. Kreisbeck, Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity, SIAM J. Math. Anal., 43 (2011), 2337-2353.  doi: 10.1137/100810320.

[22]

S. Conti and G. Dolzmann, Relaxation of a model energy for the cubic to tetragonal phase transformation in two dimensions, Math. Models. Methods Appl. Sci., 24 (2014), 2929-2942.  doi: 10.1142/S0218202514500419.

[23]

S. Conti and G. Dolzmann, Quasiconvex envelope for a model of finite elastoplasticity with one active slip system and linear hardening, Continuum Mech. Thermodyn. (2019). doi: 10.1007/s00161-019-00825-8.

[24]

S. Conti and G. Dolzmann, On the theory of relaxation in nonlinear elasticity with constraints on the determinant, Arch. Ration. Mech. Anal., 217 (2015), 413-437.  doi: 10.1007/s00205-014-0835-9.

[25]

S. Conti and G. Dolzmann, Relaxation in crystal plasticity with three active slip systems, Contin. Mech. Thermodyn., 28 (2016), 1477-1494.  doi: 10.1007/s00161-015-0490-x.

[26]

S. Conti and G. Dolzmann, An adaptive relaxation algorithm for multiscale problems and application to nematic elastomers, J. Mech. Phys. Solids, 113 (2018), 126-143.  doi: 10.1016/j.jmps.2018.02.001.

[27]

S. Conti and G. Dolzmann, Numerical study of microstructures in single-slip finite elastoplasticity, J. Optim. Theory Appl., 184 (2020), 43-60.  doi: 10.1007/s10957-018-01460-0.

[28]

S. ContiG. Dolzmann and C. Kreisbeck, Relaxation of a model in finite plasticity with two slip systems, Math. Models Methods Appl. Sci., 23 (2013), 2111-2128.  doi: 10.1142/S0218202513500279.

[29]

S. Conti and F. Theil, Single-slip elastoplastic microstructures, Arch. Ration. Mech. Anal., 178 (2005), 125-148.  doi: 10.1007/s00205-005-0371-8.

[30]

B. Dacorogna, Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, 78, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-51440-1.

[31]

G. Dal Maso, An Introduction to {$\Gamma$-Convergence}, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser, Boston, 1993. doi: 10.1007/978-1-4612-0327-8.

[32]

E. Davoli and G. A. Francfort, A critical revisiting of finite elasto-plasticity, SIAM J. Math. Anal., 47 (2015), 526-565.  doi: 10.1137/140965090.

[33]

E. De Giorgi, Sulla convergenza di alcune successioni d'integrali del tipo dell'area, Rend. Mat. (6), 8 (1975), 277-294. 

[34]

A. DeSimone and G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of $\rm SO(3)$-invariant energies, Arch. Ration. Mech. Anal., 161 (2002), 181-204.  doi: 10.1007/s002050100174.

[35]

E. D. Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 58 (1975), 842-850. 

[36]

K. HacklS. Heinz and A. Mielke, A model for the evolution of laminates in finite-strain elastoplasticity, ZAMM Z. Angew. Math. Mech., 92 (2012), 888-909.  doi: 10.1002/zamm.201100155.

[37]

W. Han and B. D. Reddy, phPlasticity, in Mathematical Theory and Numerical Analysis, Interdisciplinary Applied Mathematics, 9, Springer, New York, 2013. doi: 10.1007/978-1-4614-5940-8.

[38]

E. Kröner, Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen, Arch. Rational Mech. Anal., 4 (1960), 273-334.  doi: 10.1007/BF00281393.

[39]

M. Kružík and T. Roubíček, Optimization problems with concentration and oscillation effects: Relaxation theory and numerical approximation, Numer. Funct. Anal. Optim., 20 (1999), 511-530.  doi: 10.1080/01630569908816908.

[40]

G. Lauteri and S. Luckhaus, An energy estimate for dislocation configurations and the emergence of Cosserat-type structures in metal plasticity, preprint, arXiv: 1608.06155.

[41]

H. Le Dret and A. Raoult, The quasiconvex envelope of the Saint Venant-Kirchhoff stored energy function, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1179-1192.  doi: 10.1017/S0308210500030456.

[42]

E. H. Lee, Elastic-plastic deformation at finite strains, J. Appl. Mech., 36 (1969), 1-6.  doi: 10.21236/AD0678483.

[43]

S. Luckhaus and L. Mugnai, On a mesoscopic many-body {H}amiltonian describing elastic shears and dislocations, Contin. Mech. Thermodyn., 22 (2010), 251-290.  doi: 10.1007/s00161-010-0142-0.

[44]

S. Luckhaus and J. Wohlgemuth, Study of a model for reference-free plasticity, preprint, arXiv: 1408.1355.

[45]

M. Luskin, On the computation of crystalline microstructure, in Acta Numerica, 1996 , Acta Numer., 5, Cambridge Univ. Press, Cambridge, 1996, 191-257. doi: 10.1017/S0962492900002658.

[46]

A. Mainik and A. Mielke, Global existence for rate-independent gradient plasticity at finite strain, J. Nonlinear Sci., 19 (2009), 221-248.  doi: 10.1007/s00332-008-9033-y.

[47]

C. Miehe, On the representation of Prandtl-Reuss tensors within the framework of multiplicative elastoplasticity, Int. J. Plasticity, 10 (1994), 609-621.  doi: 10.1016/0749-6419(94)90025-6.

[48]

C. MieheM. Lambrecht and E. Gürses, Analysis of material instabilities in inelastic solids by incremental energy minimization and relaxation methods: Evolving deformation microstructures in finite plasticity, J. Mech. Phys. Solids, 52 (2004), 2725-2769.  doi: 10.1016/j.jmps.2004.05.011.

[49]

C. Miehe and E. Stein, A canonical model of multiplicative elasto-plasticity: Formulation and aspects of the numerical implementation, Europ. J. Mech. A/Solids, 11 (1992), 25-43. 

[50]

C. Miehe and M. Lambrecht, Analysis of microstructure development in shearbands by energy relaxation of incremental stress potentials: Large-strain theory for standard dissipative solids, Internat. J. Numer. Methods Engrg., 58 (2003), 1-41.  doi: 10.1002/nme.726.

[51]

A. Mielke, Energetic formulation of multiplicative elasto-plasticity using dissipation distances, Contin. Mech. Thermodyn., 15 (2003), 351-382.  doi: 10.1007/s00161-003-0120-x.

[52]

A. Mielke and S. Müller, Lower semicontinuity and existence of minimizers in incremental finite-strain elastoplasticity, ZAMM Z. Angew. Math. Mech., 86 (2006), 233–250, . doi: 10.1002/zamm.200510245.

[53]

A. MielkeR. Rossi and G. Savaré, Global existence results for viscoplasticity at finite strain, Arch. Ration. Mech. Anal., 227 (2018), 423-475.  doi: 10.1007/s00205-017-1164-6.

[54]

A. Mielke and T. Roubíček, Rate-independent systems, in Theory and Application, Applied Mathematical Sciences, 193, Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.

[55]

A. Mielke and T. Roubíček, Rate-independent elastoplasticity at finite strains and its numerical approximation, Math. Models Methods Appl. Sci., 26 (2016), 2203-2236.  doi: 10.1142/S0218202516500512.

[56]

A. Mielke and U. Stefanelli, Linearized plasticity is the evolutionary $\Gamma$-limit of finite plasticity, J. Eur. Math. Soc. (JEMS), 15 (2013), 923-948.  doi: 10.4171/JEMS/381.

[57]

A. MielkeF. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Ration. Mech. Anal., 162 (2002), 137-177.  doi: 10.1007/s002050200194.

[58]

J. Moreau, Sur les lois de frottement, de plasticité et de viscosité, Comptes Rendus de l'Académie des Sciences, 271 (1970), 608-611. 

[59]

J. C. B. Morrey, Multiple Integrals in the Calculus of Variations, Die Grundlehren der mathematischen Wissenschaften, Band, 130, Springer-Verlag New York, Inc., New York, 1966. doi: 10.1007/978-3-540-69952-1.

[60]

S. Müller, Variational models for microstructure and phase transitions, in Calculus of Variations and Geometric Evolution Problems, Lecture Notes in Math., 1713, Springer, Berlin, 1999, 85–210. doi: 10.1007/BFb0092670.

[61]

S. Müller and V. Šverák, Convex integration with constraints and applications to phase transitions and partial differential equations, J. Eur. Math. Soc. (JEMS), 1 (1999), 393-442.  doi: 10.1007/s100970050012.

[62]

S. Müller, L. Scardia and C. I. Zeppieri, Gradient theory for geometrically nonlinear plasticity via the homogenization of dislocations, in Analysis and Computation of Microstructure in Finite Plasticity, Lect. Notes Appl. Comput. Mech., 78, Springer, Cham, 2015,175–204. doi: 10.1007/978-3-319-18242-1_7.

[63]

M. Ortiz and E. A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids, 47 (1999), 397-462.  doi: 10.1016/S0022-5096(97)00096-3.

[64]

C. Reina and S. Conti, Kinematic description of crystal plasticity in the finite kinematic framework: A micromechanical understanding of ${F} = {F}^e{F}^p$, J. Mech. Phys. Solids, 67 (2014), 40-61.  doi: 10.1016/j.jmps.2014.01.014.

[65]

C. Reina and S. Conti, Incompressible inelasticity as an essential ingredient for the validity of the kinematic decomposition $F = F^eF^i$, J. Mech. Phys. Solids, 107 (2017), 322-342.  doi: 10.1016/j.jmps.2017.07.004.

[66]

T. Roubíček, Relaxation in Optimization Theory and Variational Calculus, De Gruyter Series in Nonlinear Analysis and Applications, 4, Walter de Gruyter & Co., Berlin, 1997. doi: 10.1515/9783110811919.

[67]

T. Roubíček, Numerical techniques in relaxed optimization problems, in Robust Optimization-Directed Design, Nonconvex Optim. Appl., 81, Springer, New York, 2006,157–178. doi: 10.1007/0-387-28654-3_8.

[68]

J. C. Simo, A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. I. Continuum formulation, Comput. Methods Appl. Mech. Engrg., 66 (1988), 199-219.  doi: 10.1016/0045-7825(88)90076-X.

[69]

J. C. Simo and M. Ortiz, A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations, Comput. Methods. Appl. Mech. Engrg., 49 (1985), 221-245.  doi: 10.1016/0045-7825(85)90061-1.

Figure 1.  $ W_{\mathrm{CHM}} $ with $ \mu = 2 $ along the rank-one line (3.6) with $ h = 0.1 $ and $ \tau = 1 $ (left panel) and $ h = 1 $ and $ \tau = 0 $ (right panel), see also [11,Figure 1] for the plot with $ h = 0 $.
Figure 2.  Left panel: relation between $ W_j $, $ W_{\mathrm{rigid,0}} $, $ W_j^{\mathrm{qc}} $, and $ W_{\mathrm{rigid,0}}^{\mathrm{qc}} $. Right panel: known relations between the corresponding functionals $ E_j $, $ E_{\mathrm{rigid,0}} $, $ E_j^* $, and $ E_{\mathrm{rigid,0}}^* $. See Section 5 for the definitions and details
Table 1.  Relaxation results in the literature with {rigid elasticity and} plastic energy density proportional to $ |\gamma|^\alpha $, $ \alpha = 1,2 $ and $ h\tau = 0 $. In the three cases with $ W^{\mathrm{rc}} = W^{\mathrm{qc}} = W^{\mathrm{pc}} $ an explicit formula is given in the mentioned papers, in the others there are only partial results
slip systems $ h=0 $ $ \tau=0 $
$ N=1 $ $ W^{\mathrm{rc}} = W^{\mathrm{qc}} = W^{\mathrm{pc}} $ [29] $ W^{\mathrm{rc}} = W^{\mathrm{qc}} = W^{\mathrm{pc}} $ [18]
$ N=2 $ at $ 90^\circ $ $ W^{\mathrm{rc}} \neq W^{\mathrm{pc}} $ [1] $ W^{\mathrm{rc}} = W^{\mathrm{qc}} = W^{\mathrm{pc}} $ [28]
$ N=3 $ at $ 120^\circ $ no results partial results [25]
slip systems $ h=0 $ $ \tau=0 $
$ N=1 $ $ W^{\mathrm{rc}} = W^{\mathrm{qc}} = W^{\mathrm{pc}} $ [29] $ W^{\mathrm{rc}} = W^{\mathrm{qc}} = W^{\mathrm{pc}} $ [18]
$ N=2 $ at $ 90^\circ $ $ W^{\mathrm{rc}} \neq W^{\mathrm{pc}} $ [1] $ W^{\mathrm{rc}} = W^{\mathrm{qc}} = W^{\mathrm{pc}} $ [28]
$ N=3 $ at $ 120^\circ $ no results partial results [25]
[1]

Sergio Conti, Georg Dolzmann, Carolin Kreisbeck. Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 1-16. doi: 10.3934/dcdss.2013.6.1

[2]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[3]

Leszek Gasiński, Nikolaos S. Papageorgiou. Relaxation of optimal control problems driven by nonlinear evolution equations. Evolution Equations and Control Theory, 2020, 9 (4) : 1027-1040. doi: 10.3934/eect.2020050

[4]

Qiang Du, Jingyan Zhang. Asymptotic analysis of a diffuse interface relaxation to a nonlocal optimal partition problem. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1443-1461. doi: 10.3934/dcds.2011.29.1443

[5]

Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055

[6]

K.H. Wong, Chi Kin Chan, H. W.J. Lee. Optimal feedback production for a single-echelon supply chain. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1431-1444. doi: 10.3934/dcdsb.2006.6.1431

[7]

Jinyu Dai, Shu-Cherng Fang, Wenxun Xing. Recovering optimal solutions via SOC-SDP relaxation of trust region subproblem with nonintersecting linear constraints. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1677-1699. doi: 10.3934/jimo.2018117

[8]

Ciro D'Apice, Peter I. Kogut, Rosanna Manzo. On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks and Heterogeneous Media, 2014, 9 (3) : 501-518. doi: 10.3934/nhm.2014.9.501

[9]

EL Hassene Osmani, Mounir Haddou, Naceurdine Bensalem. A new relaxation method for optimal control of semilinear elliptic variational inequalities obstacle problems. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021061

[10]

Bin Li, Xiaolong Guo, Xiaodong Zeng, Songyi Dian, Minhua Guo. An optimal pid tuning method for a single-link manipulator based on the control parametrization technique. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1813-1823. doi: 10.3934/dcdss.2020107

[11]

Kar Hung Wong, Yu Chung Eugene Lee, Heung Wing Joseph Lee, Chi Kin Chan. Optimal production schedule in a single-supplier multi-manufacturer supply chain involving time delays in both levels. Journal of Industrial and Management Optimization, 2018, 14 (3) : 877-894. doi: 10.3934/jimo.2017080

[12]

Emmanuel N. Barron, Rafal Goebel, Robert R. Jensen. The quasiconvex envelope through first-order partial differential equations which characterize quasiconvexity of nonsmooth functions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1693-1706. doi: 10.3934/dcdsb.2012.17.1693

[13]

Assane Lo, Nasser-eddine Tatar. Exponential stabilization of a structure with interfacial slip. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6285-6306. doi: 10.3934/dcds.2016073

[14]

Timothy Chumley, Scott Cook, Christopher Cox, Renato Feres. Rolling and no-slip bouncing in cylinders. Journal of Geometric Mechanics, 2020, 12 (1) : 53-84. doi: 10.3934/jgm.2020004

[15]

Constantine M. Dafermos. Hyperbolic balance laws with relaxation. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4271-4285. doi: 10.3934/dcds.2016.36.4271

[16]

Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435

[17]

Evgenii S. Baranovskii. Steady flows of an Oldroyd fluid with threshold slip. Communications on Pure and Applied Analysis, 2019, 18 (2) : 735-750. doi: 10.3934/cpaa.2019036

[18]

Gheorghe Craciun, Jiaxin Jin, Polly Y. Yu. Single-target networks. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 799-819. doi: 10.3934/dcdsb.2021065

[19]

Donatella Donatelli, Corrado Lattanzio. On the diffusive stress relaxation for multidimensional viscoelasticity. Communications on Pure and Applied Analysis, 2009, 8 (2) : 645-654. doi: 10.3934/cpaa.2009.8.645

[20]

Alberto Bressan, Wen Shen. BV estimates for multicomponent chromatography with relaxation. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 21-38. doi: 10.3934/dcds.2000.6.21

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (340)
  • HTML views (393)
  • Cited by (0)

Other articles
by authors

[Back to Top]