January  2021, 14(1): 89-119. doi: 10.3934/dcdss.2020304

Rate-independent evolution of sets

1. 

DIMI, University of Brescia, Via Branze, 38, 25133 Brescia, Italy

2. 

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria

3. 

Istituto di Matematica Applicata e Tecnologie Informatiche E. Magenes - CNR, Via Ferrata, 1, 27100 Pavia, Italy

4. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany

* Corresponding author: Riccarda Rossi

Dedicated to Alexander Mielke on the occasion of his 60th birthday

Received  March 2019 Revised  September 2019 Published  January 2021 Early access  March 2020

The goal of this work is to analyze a model for the rate-independent evolution of sets with finite perimeter. The evolution of the admissible sets is driven by that of (the complement of) a given time-dependent set, which has to include the admissible sets and hence is to be understood as an external loading. The process is driven by the competition between perimeter minimization and minimization of volume changes.

In the mathematical modeling of this process, we distinguish the adhesive case, in which the constraint that the (complement of) the `external load' contains the evolving sets is penalized by a term contributing to the driving energy functional, from the brittle case, enforcing this constraint. The existence of Energetic solutions for the adhesive system is proved by passing to the limit in the associated time-incremental minimization scheme. In the brittle case, this time-discretization procedure gives rise to evolving sets satisfying the stability condition, but it remains an open problem to additionally deduce energy-dissipation balance in the time-continuous limit. This can be obtained under some suitable quantification of data. The properties of the brittle evolution law are illustrated by numerical examples in two space dimensions.

Citation: Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304
References:
[1]

F. AlmgrenJ. E. Taylor and L. Wang, Curvature-driven flows: A variational approach, SIAM J. Control Optim., 31 (1993), 387-438.  doi: 10.1137/0331020.

[2] L. AmbrosioN. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. 
[3]

L. Ambrosio, N. Gigli and G. Savar{é}, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. doi: 10.1007/b137080.

[4]

L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19 (1995), 191-246. 

[5]

D. BucurG. Buttazzo and A. Lux, Quasistatic evolution in debonding problems via capacitary methods, Arch. Ration. Mech. Anal., 190 (2008), 281-306.  doi: 10.1007/s00205-008-0166-9.

[6]

S. Campanato, Propriet{à} di h{ö}lderianit{à} di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 17 (1963), 175-188. 

[7]

S. Campanato, Propriet{à} di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 18 (1964), 137-160. 

[8]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: Existence and approximation results, Arch. Ration. Mech. Anal., 162 (2002), 101-135.  doi: 10.1007/s002050100187.

[9]

A. Ferriero and N. Fusco, A note on the convex hull of sets of finite perimeter in the plane, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 102-108.  doi: 10.3934/dcdsb.2009.11.103.

[10]

I. Fonseca and G. A. Francfort, Relaxation in BV versus quasiconvexification in ${W^{1, p}}$ ; A model for the interaction between fracture and damage, Calc. Var. Partial Differential Equations, 3 (1995), 407-446.  doi: 10.1007/BF01187895.

[11]

G. A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46 (1998), 1319-1342.  doi: 10.1016/S0022-5096(98)00034-9.

[12]

M. Fr{é}mond, Contact with adhesion, in Topics in Nonsmooth Mechanics, Birkh{ä}user, Basel, 1988,157–185.

[13]

M. Fr{é}mond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-04800-9.

[14]

B. Kawohl, On starshaped rearrangement and applications, Trans. Amer. Math. Soc., 296 (1986), 377-386.  doi: 10.1090/S0002-9947-1986-0837818-4.

[15]

M. Ko{\v c}varaA. Mielke and T. Roub{í}{\v c}ek, A rate-independent approach to the delamination problem, Math. Mech. Solids, 11 (2006), 423-447.  doi: 10.1177/1081286505046482.

[16]

P. Krej{\v c}{\'\i} and M. Liero, Rate independent {K}urzweil processes, Appl. Math., 54 (2009), 117-145.  doi: 10.1007/s10492-009-0009-5.

[17]

S. Luckhaus and T. Sturzenhecker, Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differential Equations, 3 (1995), 253-271.  doi: 10.1007/BF01205007.

[18]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22 (2005), 73-99.  doi: 10.1007/s00526-004-0267-8.

[19]

A. MielkeT. Roub{í}{\v c}ek and U. Stefanelli, {$\Gamma$}-limits and relaxations for rate-independent evolutionary problems, Calc. Var. Partial Differential Equations, 31 (2008), 387-416.  doi: 10.1007/s00526-007-0119-4.

[20]

A. Mielke and T. Roub{\'\i}{\v c}ek, Rate-Independent Systems. Theory and Application, Applied Mathematical Sciences, 193, Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.

[21]

A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, Proceedings of the Workshop on ``Models of Continuum Mechanics in Analysis and Engineering'', Shaker-Verlag, 1999,117–129.

[22]

A. Mielke and F. Theil, On rate–independent hysteresis models, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151-189.  doi: 10.1007/s00030-003-1052-7.

[23]

R. Rossi and M. Thomas, From an adhesive to a brittle delamination model in thermo-visco-elasticity, ESAIM Control Optim. Calc. Var., 21 (2015), 1-59.  doi: 10.1051/cocv/2014015.

[24]

T. Roub{í}{\v c}ekL. Scardia and C. Zanini, Quasistatic delamination problem, Contin. Mech. Thermodyn., 21 (2009), 223-235.  doi: 10.1007/s00161-009-0106-4.

[25]

T. Roub{\'\i}{\v c}ekM. Thomas and C. G. Panagiotopoulos, Stress-driven local-solution approach to quasistatic brittle delamination, Nonlinear Anal. Real World Appl., 22 (2015), 645-663.  doi: 10.1016/j.nonrwa.2014.09.011.

[26]

M. Thomas, Quasistatic damage evolution with spatial BV-regularization, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 235-255.  doi: 10.3934/dcdss.2013.6.235.

[27]

M. Thomas, Uniform {P}oincaré-{S}obolev and isoperimetric inequalities for classes of domains, Discrete Contin. Dyn. Syst., 35 (2015), 2741-2761.  doi: 10.3934/dcds.2015.35.2741.

[28]

A. Visintin, Motion by mean curvature and nucleation, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 55-60.  doi: 10.1016/S0764-4442(97)83933-X.

[29]

A. Visintin, Nucleation and mean curvature flow, Comm. Partial Differential Equations, 23 (1998), 17-53.  doi: 10.1080/03605309808821337.

show all references

References:
[1]

F. AlmgrenJ. E. Taylor and L. Wang, Curvature-driven flows: A variational approach, SIAM J. Control Optim., 31 (1993), 387-438.  doi: 10.1137/0331020.

[2] L. AmbrosioN. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. 
[3]

L. Ambrosio, N. Gigli and G. Savar{é}, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. doi: 10.1007/b137080.

[4]

L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19 (1995), 191-246. 

[5]

D. BucurG. Buttazzo and A. Lux, Quasistatic evolution in debonding problems via capacitary methods, Arch. Ration. Mech. Anal., 190 (2008), 281-306.  doi: 10.1007/s00205-008-0166-9.

[6]

S. Campanato, Propriet{à} di h{ö}lderianit{à} di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 17 (1963), 175-188. 

[7]

S. Campanato, Propriet{à} di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 18 (1964), 137-160. 

[8]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: Existence and approximation results, Arch. Ration. Mech. Anal., 162 (2002), 101-135.  doi: 10.1007/s002050100187.

[9]

A. Ferriero and N. Fusco, A note on the convex hull of sets of finite perimeter in the plane, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 102-108.  doi: 10.3934/dcdsb.2009.11.103.

[10]

I. Fonseca and G. A. Francfort, Relaxation in BV versus quasiconvexification in ${W^{1, p}}$ ; A model for the interaction between fracture and damage, Calc. Var. Partial Differential Equations, 3 (1995), 407-446.  doi: 10.1007/BF01187895.

[11]

G. A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46 (1998), 1319-1342.  doi: 10.1016/S0022-5096(98)00034-9.

[12]

M. Fr{é}mond, Contact with adhesion, in Topics in Nonsmooth Mechanics, Birkh{ä}user, Basel, 1988,157–185.

[13]

M. Fr{é}mond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-04800-9.

[14]

B. Kawohl, On starshaped rearrangement and applications, Trans. Amer. Math. Soc., 296 (1986), 377-386.  doi: 10.1090/S0002-9947-1986-0837818-4.

[15]

M. Ko{\v c}varaA. Mielke and T. Roub{í}{\v c}ek, A rate-independent approach to the delamination problem, Math. Mech. Solids, 11 (2006), 423-447.  doi: 10.1177/1081286505046482.

[16]

P. Krej{\v c}{\'\i} and M. Liero, Rate independent {K}urzweil processes, Appl. Math., 54 (2009), 117-145.  doi: 10.1007/s10492-009-0009-5.

[17]

S. Luckhaus and T. Sturzenhecker, Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differential Equations, 3 (1995), 253-271.  doi: 10.1007/BF01205007.

[18]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22 (2005), 73-99.  doi: 10.1007/s00526-004-0267-8.

[19]

A. MielkeT. Roub{í}{\v c}ek and U. Stefanelli, {$\Gamma$}-limits and relaxations for rate-independent evolutionary problems, Calc. Var. Partial Differential Equations, 31 (2008), 387-416.  doi: 10.1007/s00526-007-0119-4.

[20]

A. Mielke and T. Roub{\'\i}{\v c}ek, Rate-Independent Systems. Theory and Application, Applied Mathematical Sciences, 193, Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.

[21]

A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, Proceedings of the Workshop on ``Models of Continuum Mechanics in Analysis and Engineering'', Shaker-Verlag, 1999,117–129.

[22]

A. Mielke and F. Theil, On rate–independent hysteresis models, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151-189.  doi: 10.1007/s00030-003-1052-7.

[23]

R. Rossi and M. Thomas, From an adhesive to a brittle delamination model in thermo-visco-elasticity, ESAIM Control Optim. Calc. Var., 21 (2015), 1-59.  doi: 10.1051/cocv/2014015.

[24]

T. Roub{í}{\v c}ekL. Scardia and C. Zanini, Quasistatic delamination problem, Contin. Mech. Thermodyn., 21 (2009), 223-235.  doi: 10.1007/s00161-009-0106-4.

[25]

T. Roub{\'\i}{\v c}ekM. Thomas and C. G. Panagiotopoulos, Stress-driven local-solution approach to quasistatic brittle delamination, Nonlinear Anal. Real World Appl., 22 (2015), 645-663.  doi: 10.1016/j.nonrwa.2014.09.011.

[26]

M. Thomas, Quasistatic damage evolution with spatial BV-regularization, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 235-255.  doi: 10.3934/dcdss.2013.6.235.

[27]

M. Thomas, Uniform {P}oincaré-{S}obolev and isoperimetric inequalities for classes of domains, Discrete Contin. Dyn. Syst., 35 (2015), 2741-2761.  doi: 10.3934/dcds.2015.35.2741.

[28]

A. Visintin, Motion by mean curvature and nucleation, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 55-60.  doi: 10.1016/S0764-4442(97)83933-X.

[29]

A. Visintin, Nucleation and mean curvature flow, Comm. Partial Differential Equations, 23 (1998), 17-53.  doi: 10.1080/03605309808821337.

Figure 1.  An example for nonconnectedness: A needle-like forcing F.
Figure 3.  Solutions of the minimization problem (54) with forcing $ F^c $ being an equilateral triangle, a square, and a regular hexagon, respectively
Figure 8.  Partial $ C^1 $ regularity. The two solutions correspond to $ v(x) = 3/4 - |x{-}1/2| $ (left) and $ v(x) = 1/4 + |x{-}1/2| $ (right)
Figure 2.  The C1 competitor profile
Figure 7.  Convex forcing $ F^{c} $. The two solutions correspond to $ v(x) = 3/4 - \beta(x{-}1/2)^2 $ for $ \beta = 2 $ (left) and $ \beta = 1/5 $ (right). The minimal set $ Z $ is convex
Figure 4.  The evolution from (60) for $ M = 5 $ and time $ t = 2 $.
Figure 5.  An evolution of connected sets fulfilling the compatibility condition (50), time flows from left to right
Figure 6.  The effect of changing the parameter $ a $. The two solutions correspond to $ v(x) = (x{-}1/2)^2+1/2 $ for $ a = 7 $ (left) and $ a = 3 $ (right). The top adhesion zone is smaller for smaller $ a $. Note that the parts of the boundary of $ Z $ which are not in contact with $ F^c $ are arcs of circles with radius $ 1/a $ (recall that $ a $ is different in the two figures), as predicted in Subsection 4.1
Figure 9.  Extreme configurations. The solution for $ v(x) = \max\{1-5|x{-}1/2|,1/2\} $ (left) and $ v(x) = \lfloor 5x\rfloor/5+1/5 $ (right)
[1]

Annalisa Cesaroni, Matteo Novaga. Volume constrained minimizers of the fractional perimeter with a potential energy. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 715-727. doi: 10.3934/dcdss.2017036

[2]

Luigi Ambrosio, Michele Miranda jr., Diego Pallara. Sets with finite perimeter in Wiener spaces, perimeter measure and boundary rectifiability. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 591-606. doi: 10.3934/dcds.2010.28.591

[3]

Andrea Braides, Antonio Tribuzio. Perturbed minimizing movements of families of functionals. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 373-393. doi: 10.3934/dcdss.2020324

[4]

Alessandro Ferriero, Nicola Fusco. A note on the convex hull of sets of finite perimeter in the plane. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 103-108. doi: 10.3934/dcdsb.2009.11.103

[5]

Antonin Chambolle, Francesco Doveri. Minimizing movements of the Mumford and Shah energy. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 153-174. doi: 10.3934/dcds.1997.3.153

[6]

Annibale Magni, Matteo Novaga. A note on non lower semicontinuous perimeter functionals on partitions. Networks and Heterogeneous Media, 2016, 11 (3) : 501-508. doi: 10.3934/nhm.2016006

[7]

Serena Dipierro, Alessio Figalli, Giampiero Palatucci, Enrico Valdinoci. Asymptotics of the $s$-perimeter as $s\searrow 0$. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2777-2790. doi: 10.3934/dcds.2013.33.2777

[8]

Agissilaos G. Athanassoulis, Gerassimos A. Athanassoulis, Mariya Ptashnyk, Themistoklis Sapsis. Strong solutions for the Alber equation and stability of unidirectional wave spectra. Kinetic and Related Models, 2020, 13 (4) : 703-737. doi: 10.3934/krm.2020024

[9]

Antonio Tribuzio. Perturbations of minimizing movements and curves of maximal slope. Networks and Heterogeneous Media, 2018, 13 (3) : 423-448. doi: 10.3934/nhm.2018019

[10]

Samuel Amstutz, Antonio André Novotny, Nicolas Van Goethem. Minimal partitions and image classification using a gradient-free perimeter approximation. Inverse Problems and Imaging, 2014, 8 (2) : 361-387. doi: 10.3934/ipi.2014.8.361

[11]

Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129

[12]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[13]

Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2101-2116. doi: 10.3934/cpaa.2021059

[14]

Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer. On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences & Engineering, 2007, 4 (2) : 319-338. doi: 10.3934/mbe.2007.4.319

[15]

Nobuyuki Kato. Linearized stability and asymptotic properties for abstract boundary value functional evolution problems. Conference Publications, 1998, 1998 (Special) : 371-387. doi: 10.3934/proc.1998.1998.371

[16]

Qiumei Zhang, Daqing Jiang, Li Zu. The stability of a perturbed eco-epidemiological model with Holling type II functional response by white noise. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 295-321. doi: 10.3934/dcdsb.2015.20.295

[17]

Armands Gritsans, Felix Sadyrbaev. The Nehari solutions and asymmetric minimizers. Conference Publications, 2015, 2015 (special) : 562-568. doi: 10.3934/proc.2015.0562

[18]

Annalisa Cesaroni, Serena Dipierro, Matteo Novaga, Enrico Valdinoci. Minimizers of the $ p $-oscillation functional. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6785-6799. doi: 10.3934/dcds.2019231

[19]

Florian Krügel. Some properties of minimizers of a variational problem involving the total variation functional. Communications on Pure and Applied Analysis, 2015, 14 (1) : 341-360. doi: 10.3934/cpaa.2015.14.341

[20]

Riccardo March, Giuseppe Riey. Euler equations and trace properties of minimizers of a functional for motion compensated inpainting. Inverse Problems and Imaging, 2022, 16 (4) : 703-737. doi: 10.3934/ipi.2021072

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (192)
  • HTML views (366)
  • Cited by (0)

[Back to Top]