-
Previous Article
Existence of weak solutions for a sharp interface model for phase separation on biological membranes
- DCDS-S Home
- This Issue
-
Next Article
Numerical approximation of von Kármán viscoelastic plates
Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system
FB Mathematik, TU Darmstadt, Schlossgartenstr. 7, 64293 Darmstadt, Germany |
We prove a global existence, uniqueness and regularity result for a two-species reaction-diffusion volume-surface system that includes nonlinear bulk diffusion and nonlinear (weak) cross diffusion on the active surface. A key feature is a proof of upper $ L^{\infty} $-bounds that exploits the entropic gradient structure of the system.
References:
[1] |
D. Bothe, On the multi-physics of mass-transfer across fluid interfaces, arXiv: 1501.05610. Google Scholar |
[2] |
D. Bothe, M. Köhne, S. Maier and J. Saal,
Global strong solutions for a class of heterogeneous catalysis models, J. Math. Anal. Appl., 445 (2017), 677-709.
doi: 10.1016/j.jmaa.2016.08.016. |
[3] |
H. Brézis, Opérateurs Maximaux Montones et Semi-groupes de Contractions Dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973. |
[4] |
K. Disser,
Well-posedness for coupled bulk-interface diffusion with mixed boundary conditions, Analysis, 35 (2015), 309-317.
doi: 10.1515/anly-2014-1308. |
[5] |
K. Disser, Global existence, uniqueness and stability for nonlinear dissipative bulk-interface interaction systems, arXiv: 1703.07616, J. Differential Equations, accepted for publication (2020). Google Scholar |
[6] |
K. Disser, M. Meyries and J. Rehberg,
A unified framework for parabolic equations with mixed boundary conditions and diffusion on interfaces, J. Math. Anal. Appl., 430 (2015), 1102-1123.
doi: 10.1016/j.jmaa.2015.05.041. |
[7] |
K. Fellner, E. Latos and B. Q. Tang,
Well-posedness and exponential equilibration of a volume-surface reaction-diffusion system with nonlinear boundary coupling, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 643-673.
doi: 10.1016/j.anihpc.2017.07.002. |
[8] |
J. R. Fernández, P. Kalita, S. Migórski, M. C. Muñiz and C. Nuñéz,
Existence and uniqueness results for a kinetic model in bulk-surface surfactant dynamics, SIAM J. Math. Anal., 48 (2016), 3065-3089.
doi: 10.1137/15M1012785. |
[9] |
J. Fischer,
Weak-strong uniqueness of solutions to entropy-dissipating reaction-diffusion equations, Nonlinear Anal., 159 (2017), 181-207.
doi: 10.1016/j.na.2017.03.001. |
[10] |
A. Glitzky,
An electronic model for solar cells including active interfaces and energy resolved defect densities, SIAM J. Math. Anal., 44 (2012), 3874-3900.
doi: 10.1137/110858847. |
[11] |
A. Glitzky and A. Mielke,
A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces, Z. Angew. Math. Phys., 64 (2013), 29-52.
doi: 10.1007/s00033-012-0207-y. |
[12] |
A. J{ü}ngel,
The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, 28 (2015), 1963-2001.
doi: 10.1088/0951-7715/28/6/1963. |
[13] |
F. Keil,
Complexities in modeling of heterogeneous catalytic reactions, Comput. Math. Appl., 65 (2013), 1674-1697.
doi: 10.1016/j.camwa.2012.11.023. |
[14] |
S. Kjelstrup and D. Bedeaux, Non-equilibrium Thermodynamics of Heterogeneous Systems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.
doi: 10.1142/9789812779144. |
[15] |
A. Mielke,
Thermomechanical modeling of energy-reaction-diffusion systems, including bulk- interface interactions, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 479-499.
doi: 10.3934/dcdss.2013.6.479. |
[16] |
M. Pierre,
Global existence in reaction-diffusion systems with control of mass: A survey, Milan J. Math., 78 (2010), 417-455.
doi: 10.1007/s00032-010-0133-4. |
show all references
References:
[1] |
D. Bothe, On the multi-physics of mass-transfer across fluid interfaces, arXiv: 1501.05610. Google Scholar |
[2] |
D. Bothe, M. Köhne, S. Maier and J. Saal,
Global strong solutions for a class of heterogeneous catalysis models, J. Math. Anal. Appl., 445 (2017), 677-709.
doi: 10.1016/j.jmaa.2016.08.016. |
[3] |
H. Brézis, Opérateurs Maximaux Montones et Semi-groupes de Contractions Dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973. |
[4] |
K. Disser,
Well-posedness for coupled bulk-interface diffusion with mixed boundary conditions, Analysis, 35 (2015), 309-317.
doi: 10.1515/anly-2014-1308. |
[5] |
K. Disser, Global existence, uniqueness and stability for nonlinear dissipative bulk-interface interaction systems, arXiv: 1703.07616, J. Differential Equations, accepted for publication (2020). Google Scholar |
[6] |
K. Disser, M. Meyries and J. Rehberg,
A unified framework for parabolic equations with mixed boundary conditions and diffusion on interfaces, J. Math. Anal. Appl., 430 (2015), 1102-1123.
doi: 10.1016/j.jmaa.2015.05.041. |
[7] |
K. Fellner, E. Latos and B. Q. Tang,
Well-posedness and exponential equilibration of a volume-surface reaction-diffusion system with nonlinear boundary coupling, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 643-673.
doi: 10.1016/j.anihpc.2017.07.002. |
[8] |
J. R. Fernández, P. Kalita, S. Migórski, M. C. Muñiz and C. Nuñéz,
Existence and uniqueness results for a kinetic model in bulk-surface surfactant dynamics, SIAM J. Math. Anal., 48 (2016), 3065-3089.
doi: 10.1137/15M1012785. |
[9] |
J. Fischer,
Weak-strong uniqueness of solutions to entropy-dissipating reaction-diffusion equations, Nonlinear Anal., 159 (2017), 181-207.
doi: 10.1016/j.na.2017.03.001. |
[10] |
A. Glitzky,
An electronic model for solar cells including active interfaces and energy resolved defect densities, SIAM J. Math. Anal., 44 (2012), 3874-3900.
doi: 10.1137/110858847. |
[11] |
A. Glitzky and A. Mielke,
A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces, Z. Angew. Math. Phys., 64 (2013), 29-52.
doi: 10.1007/s00033-012-0207-y. |
[12] |
A. J{ü}ngel,
The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, 28 (2015), 1963-2001.
doi: 10.1088/0951-7715/28/6/1963. |
[13] |
F. Keil,
Complexities in modeling of heterogeneous catalytic reactions, Comput. Math. Appl., 65 (2013), 1674-1697.
doi: 10.1016/j.camwa.2012.11.023. |
[14] |
S. Kjelstrup and D. Bedeaux, Non-equilibrium Thermodynamics of Heterogeneous Systems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.
doi: 10.1142/9789812779144. |
[15] |
A. Mielke,
Thermomechanical modeling of energy-reaction-diffusion systems, including bulk- interface interactions, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 479-499.
doi: 10.3934/dcdss.2013.6.479. |
[16] |
M. Pierre,
Global existence in reaction-diffusion systems with control of mass: A survey, Milan J. Math., 78 (2010), 417-455.
doi: 10.1007/s00032-010-0133-4. |
[1] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[2] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[3] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[4] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[5] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[6] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[7] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[8] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[9] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[10] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[11] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[12] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[13] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[14] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[15] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[16] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[17] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[18] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[19] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[20] |
Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021008 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]