January  2021, 14(1): 321-330. doi: 10.3934/dcdss.2020326

Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system

FB Mathematik, TU Darmstadt, Schlossgartenstr. 7, 64293 Darmstadt, Germany

Dedicated to Alexander Mielke on the occasion of his 60th birthday

Received  April 2019 Revised  November 2019 Published  January 2021 Early access  April 2020

We prove a global existence, uniqueness and regularity result for a two-species reaction-diffusion volume-surface system that includes nonlinear bulk diffusion and nonlinear (weak) cross diffusion on the active surface. A key feature is a proof of upper $ L^{\infty} $-bounds that exploits the entropic gradient structure of the system.

Citation: Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326
References:
[1]

D. Bothe, On the multi-physics of mass-transfer across fluid interfaces, arXiv: 1501.05610.

[2]

D. BotheM. KöhneS. Maier and J. Saal, Global strong solutions for a class of heterogeneous catalysis models, J. Math. Anal. Appl., 445 (2017), 677-709.  doi: 10.1016/j.jmaa.2016.08.016.

[3]

H. Brézis, Opérateurs Maximaux Montones et Semi-groupes de Contractions Dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973.

[4]

K. Disser, Well-posedness for coupled bulk-interface diffusion with mixed boundary conditions, Analysis, 35 (2015), 309-317.  doi: 10.1515/anly-2014-1308.

[5]

K. Disser, Global existence, uniqueness and stability for nonlinear dissipative bulk-interface interaction systems, arXiv: 1703.07616, J. Differential Equations, accepted for publication (2020).

[6]

K. DisserM. Meyries and J. Rehberg, A unified framework for parabolic equations with mixed boundary conditions and diffusion on interfaces, J. Math. Anal. Appl., 430 (2015), 1102-1123.  doi: 10.1016/j.jmaa.2015.05.041.

[7]

K. FellnerE. Latos and B. Q. Tang, Well-posedness and exponential equilibration of a volume-surface reaction-diffusion system with nonlinear boundary coupling, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 643-673.  doi: 10.1016/j.anihpc.2017.07.002.

[8]

J. R. FernándezP. KalitaS. MigórskiM. C. Muñiz and C. Nuñéz, Existence and uniqueness results for a kinetic model in bulk-surface surfactant dynamics, SIAM J. Math. Anal., 48 (2016), 3065-3089.  doi: 10.1137/15M1012785.

[9]

J. Fischer, Weak-strong uniqueness of solutions to entropy-dissipating reaction-diffusion equations, Nonlinear Anal., 159 (2017), 181-207.  doi: 10.1016/j.na.2017.03.001.

[10]

A. Glitzky, An electronic model for solar cells including active interfaces and energy resolved defect densities, SIAM J. Math. Anal., 44 (2012), 3874-3900.  doi: 10.1137/110858847.

[11]

A. Glitzky and A. Mielke, A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces, Z. Angew. Math. Phys., 64 (2013), 29-52.  doi: 10.1007/s00033-012-0207-y.

[12]

A. J{ü}ngel, The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, 28 (2015), 1963-2001.  doi: 10.1088/0951-7715/28/6/1963.

[13]

F. Keil, Complexities in modeling of heterogeneous catalytic reactions, Comput. Math. Appl., 65 (2013), 1674-1697.  doi: 10.1016/j.camwa.2012.11.023.

[14]

S. Kjelstrup and D. Bedeaux, Non-equilibrium Thermodynamics of Heterogeneous Systems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. doi: 10.1142/9789812779144.

[15]

A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk- interface interactions, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 479-499.  doi: 10.3934/dcdss.2013.6.479.

[16]

M. Pierre, Global existence in reaction-diffusion systems with control of mass: A survey, Milan J. Math., 78 (2010), 417-455.  doi: 10.1007/s00032-010-0133-4.

show all references

References:
[1]

D. Bothe, On the multi-physics of mass-transfer across fluid interfaces, arXiv: 1501.05610.

[2]

D. BotheM. KöhneS. Maier and J. Saal, Global strong solutions for a class of heterogeneous catalysis models, J. Math. Anal. Appl., 445 (2017), 677-709.  doi: 10.1016/j.jmaa.2016.08.016.

[3]

H. Brézis, Opérateurs Maximaux Montones et Semi-groupes de Contractions Dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973.

[4]

K. Disser, Well-posedness for coupled bulk-interface diffusion with mixed boundary conditions, Analysis, 35 (2015), 309-317.  doi: 10.1515/anly-2014-1308.

[5]

K. Disser, Global existence, uniqueness and stability for nonlinear dissipative bulk-interface interaction systems, arXiv: 1703.07616, J. Differential Equations, accepted for publication (2020).

[6]

K. DisserM. Meyries and J. Rehberg, A unified framework for parabolic equations with mixed boundary conditions and diffusion on interfaces, J. Math. Anal. Appl., 430 (2015), 1102-1123.  doi: 10.1016/j.jmaa.2015.05.041.

[7]

K. FellnerE. Latos and B. Q. Tang, Well-posedness and exponential equilibration of a volume-surface reaction-diffusion system with nonlinear boundary coupling, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 643-673.  doi: 10.1016/j.anihpc.2017.07.002.

[8]

J. R. FernándezP. KalitaS. MigórskiM. C. Muñiz and C. Nuñéz, Existence and uniqueness results for a kinetic model in bulk-surface surfactant dynamics, SIAM J. Math. Anal., 48 (2016), 3065-3089.  doi: 10.1137/15M1012785.

[9]

J. Fischer, Weak-strong uniqueness of solutions to entropy-dissipating reaction-diffusion equations, Nonlinear Anal., 159 (2017), 181-207.  doi: 10.1016/j.na.2017.03.001.

[10]

A. Glitzky, An electronic model for solar cells including active interfaces and energy resolved defect densities, SIAM J. Math. Anal., 44 (2012), 3874-3900.  doi: 10.1137/110858847.

[11]

A. Glitzky and A. Mielke, A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces, Z. Angew. Math. Phys., 64 (2013), 29-52.  doi: 10.1007/s00033-012-0207-y.

[12]

A. J{ü}ngel, The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, 28 (2015), 1963-2001.  doi: 10.1088/0951-7715/28/6/1963.

[13]

F. Keil, Complexities in modeling of heterogeneous catalytic reactions, Comput. Math. Appl., 65 (2013), 1674-1697.  doi: 10.1016/j.camwa.2012.11.023.

[14]

S. Kjelstrup and D. Bedeaux, Non-equilibrium Thermodynamics of Heterogeneous Systems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. doi: 10.1142/9789812779144.

[15]

A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk- interface interactions, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 479-499.  doi: 10.3934/dcdss.2013.6.479.

[16]

M. Pierre, Global existence in reaction-diffusion systems with control of mass: A survey, Milan J. Math., 78 (2010), 417-455.  doi: 10.1007/s00032-010-0133-4.

[1]

Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182

[2]

Boris Andreianov, Halima Labani. Preconditioning operators and $L^\infty$ attractor for a class of reaction-diffusion systems. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2179-2199. doi: 10.3934/cpaa.2012.11.2179

[3]

Anouar El Harrak, Hatim Tayeq, Amal Bergam. A posteriori error estimates for a finite volume scheme applied to a nonlinear reaction-diffusion equation in population dynamics. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2183-2197. doi: 10.3934/dcdss.2021062

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4963-4998. doi: 10.3934/dcdsb.2020321

[5]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[6]

Yansu Ji, Jianwei Shen, Xiaochen Mao. Pattern formation of Brusselator in the reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022103

[7]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[8]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[9]

Takashi Kajiwara. The sub-supersolution method for the FitzHugh-Nagumo type reaction-diffusion system with heterogeneity. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2441-2465. doi: 10.3934/dcds.2018101

[10]

Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure and Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721

[11]

Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304

[12]

Klemens Fellner, Wolfang Prager, Bao Q. Tang. The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks. Kinetic and Related Models, 2017, 10 (4) : 1055-1087. doi: 10.3934/krm.2017042

[13]

Sze-Bi Hsu, Junping Shi, Feng-Bin Wang. Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3169-3189. doi: 10.3934/dcdsb.2014.19.3169

[14]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. Determination of initial data for a reaction-diffusion system with variable coefficients. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 771-801. doi: 10.3934/dcds.2019032

[15]

Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences & Engineering, 2005, 2 (2) : 227-238. doi: 10.3934/mbe.2005.2.227

[16]

José-Francisco Rodrigues, Lisa Santos. On a constrained reaction-diffusion system related to multiphase problems. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 299-319. doi: 10.3934/dcds.2009.25.299

[17]

W. E. Fitzgibbon, M. Langlais, J.J. Morgan. A reaction-diffusion system modeling direct and indirect transmission of diseases. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 893-910. doi: 10.3934/dcdsb.2004.4.893

[18]

Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

[19]

Sebastian Aniţa, Vincenzo Capasso. Stabilization of a reaction-diffusion system modelling malaria transmission. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1673-1684. doi: 10.3934/dcdsb.2012.17.1673

[20]

Michaël Bages, Patrick Martinez. Existence of pulsating waves in a monostable reaction-diffusion system in solid combustion. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 817-869. doi: 10.3934/dcdsb.2010.14.817

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (204)
  • HTML views (305)
  • Cited by (0)

Other articles
by authors

[Back to Top]