• Previous Article
    Numerical approximation of von Kármán viscoelastic plates
  • DCDS-S Home
  • This Issue
  • Next Article
    Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials
January  2021, 14(1): 273-297. doi: 10.3934/dcdss.2020327

Contraction and regularizing properties of heat flows in metric measure spaces

1. 

Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK

2. 

Dipartimento di Matematica 'Felice Casorati', University of Pavia, Via Ferrata 1, 27100 Pavia, Italy

* Corresponding author: Giuseppe Savaré

Dedicated to Alexander Mielke on the occasion of his 60th birthday

Received  April 2019 Revised  October 2019 Published  April 2020

Fund Project: The second author is partially supported by PRIN2015 grant from MIUR for the project Calculus of Variations and by IMATI-CNR

We illustrate some novel contraction and regularizing properties of the Heat flow in metric-measure spaces that emphasize an interplay between Hellinger-Kakutani, Kantorovich-Wasserstein and Hellinger-Kantorovich distances. Contraction properties of Hellinger-Kakutani distances and general Csiszár divergences hold in arbitrary metric-measure spaces and do not require assumptions on the linearity of the flow.

When weaker transport distances are involved, we will show that contraction and regularizing effects rely on the dual formulations of the distances and are strictly related to lower Ricci curvature bounds in the setting of $ \mathrm{RCD}(K, \infty) $ metric measure spaces. As a byproduct, when $ K\ge0 $ we will also find new estimates for the asymptotic decay of the solution.

Citation: Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327
References:
[1]

L. Ambrosio, A. Mondino and G. Savaré, Nonlinear diffusion equations and curvature conditions in metric measure spaces,, Amer. Math. Soc., 262 (2019), v+121 pp. doi: 10.1090/memo/1270.  Google Scholar

[2]

L. AmbrosioM. Erbar and G. Savaré, Optimal transport, Cheeger energies and contractivity of dynamic transport distances in extended spaces, Nonlinear Anal., 137 (2016), 77-134.  doi: 10.1016/j.na.2015.12.006.  Google Scholar

[3]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.  Google Scholar

[4]

L. AmbrosioN. Gigli and G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 195 (2014), 289-391.  doi: 10.1007/s00222-013-0456-1.  Google Scholar

[5]

L. AmbrosioN. Gigli and G. Savaré, Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163 (2014), 1405-1490.  doi: 10.1215/00127094-2681605.  Google Scholar

[6]

L. AmbrosioN. Gigli and G. Savaré, Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab., 43 (2015), 339-404.  doi: 10.1214/14-AOP907.  Google Scholar

[7]

L. AmbrosioG. Savaré and L. Zambotti, Existence and stability for Fokker-Planck equations with log-concave reference measure, Probab. Theory Relat. Fields, 145 (2009), 517-564.  doi: 10.1007/s00440-008-0177-3.  Google Scholar

[8]

D. Bakry and M. Émery, Diffusions hypercontractives,, Séminaire de Probabilités de Strasbourg, 19 (1985), 177–206. doi: 10.1007/BFb0075847.  Google Scholar

[9]

D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, vol. 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Cham, 2014. doi: 10.1007/978-3-319-00227-9.  Google Scholar

[10]

D. BakryI. Gentil and M. Ledoux, On Harnack inequalities and optimal transportation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 14 (2015), 705-727.   Google Scholar

[11]

A. Björn and J. Björn, Nonlinear Potential Theory on Metric Spaces, vol. 17 of EMS Tracts in Mathematics, European Mathematical Society (EMS), Zürich, 2011. doi: 10.4171/099.  Google Scholar

[12]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973, North-Holland Mathematics Studies, No. 5. Notas de Matemática (50).  Google Scholar

[13]

J. A. CarrilloR. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., 179 (2006), 217-263.  doi: 10.1007/s00205-005-0386-1.  Google Scholar

[14]

L. ChizatG. PeyréB. Schmitzer and F.-X. Vialard, An interpolating distance between optimal transport and Fisher-Rao metrics, Found. Comput. Math., 18 (2018), 1-44.  doi: 10.1007/s10208-016-9331-y.  Google Scholar

[15]

L. ChizatG. PeyréB. Schmitzer and F.-X. Vialard, Unbalanced optimal transport: Dynamic and Kantorovich formulations, J. Funct. Anal., 274 (2018), 3090-3123.  doi: 10.1016/j.jfa.2018.03.008.  Google Scholar

[16]

I. Csiszár, Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hungar., 2 (1967), 299-318.   Google Scholar

[17]

S. Daneri and G. Savaré, Eulerian calculus for the displacement convexity in the Wasserstein distance, SIAM J. Math. Anal., 40 (2008), 1104-1122.  doi: 10.1137/08071346X.  Google Scholar

[18]

C. Dellacherie and P.-A. Meyer, Probabilities and Potential. C, vol. 151 of North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1988, Potential theory for discrete and continuous semigroups, Translated from the French by J. Norris.  Google Scholar

[19]

M. Erbar, The heat equation on manifolds as a gradient flow in the Wasserstein space, Annales de l'Institut Henri Poincaré - Probabilités et Statistiques, 46 (2010), 1-23.  doi: 10.1214/08-AIHP306.  Google Scholar

[20]

M. ErbarK. Kuwada and K.-T. Sturm, On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces, Invent. Math., 201 (2015), 993-1071.  doi: 10.1007/s00222-014-0563-7.  Google Scholar

[21]

N. GigliK. Kuwada and S. Ohta, Heat flow on Alexandrov spaces, Comm. Pure Appl. Math., 66 (2013), 307-331.  doi: 10.1002/cpa.21431.  Google Scholar

[22]

J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181 (1998), 1-61.  doi: 10.1007/BF02392747.  Google Scholar

[23]

J. Heinonen, P. Koskela, N. Shanmugalingam and J. T. Tyson, Sobolev Spaces on Metric Measure Spaces, vol. 27 of New Mathematical Monographs, Cambridge University Press, Cambridge, 2015, An approach based on upper gradients. doi: 10.1017/CBO9781316135914.  Google Scholar

[24]

E. Hellinger, Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen, J. Reine Angew. Math., 136 (1909), 210-271.  doi: 10.1515/crll.1909.136.210.  Google Scholar

[25]

R. JordanD. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM Journal on Mathematical Analysis, 29 (1998), 1-17.  doi: 10.1137/S0036141096303359.  Google Scholar

[26]

S. Kakutani, On equivalence of infinite product measures, Ann. of Math. (2), 49 (1948), 214-224.  doi: 10.2307/1969123.  Google Scholar

[27]

S. Kondratyev, L. Monsaingeon and D. Vorotnikov, A new optimal transport distance on the space of finite Radon measures, Adv. Differential Equations, 21 (2016), 1117–1164, URL http://projecteuclid.org/euclid.ade/1476369298.  Google Scholar

[28]

P. Koskela and P. MacManus, Quasiconformal mappings and Sobolev spaces, Studia Math., 131 (1998), 1-17.   Google Scholar

[29]

S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Statistics, 22 (1951), 79-86.  doi: 10.1214/aoms/1177729694.  Google Scholar

[30]

K. Kuwada, Duality on gradient estimates and Wasserstein controls, J. Funct. Anal., 258 (2010), 3758-3774.  doi: 10.1016/j.jfa.2010.01.010.  Google Scholar

[31]

M. LieroA. Mielke and G. Savaré, Optimal transport in competition with reaction: The Hellinger-Kantorovich distance and geodesic curves, SIAM J. Math. Anal., 48 (2016), 2869-2911.  doi: 10.1137/15M1041420.  Google Scholar

[32]

M. LieroA. Mielke and G. Savaré, Optimal entropy-transport problems and a new Hellinger-Kantorovich distance between positive measures, Invent. Math., 211 (2018), 969-1117.  doi: 10.1007/s00222-017-0759-8.  Google Scholar

[33]

F. Liese and I. Vajda, On divergences and informations in statistics and information theory, IEEE Trans. Inform. Theory, 52 (2006), 4394-4412.  doi: 10.1109/TIT.2006.881731.  Google Scholar

[34]

J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169 (2009), 903-991.  doi: 10.4007/annals.2009.169.903.  Google Scholar

[35]

F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), 361-400.  doi: 10.1006/jfan.1999.3557.  Google Scholar

[36]

F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174.  doi: 10.1081/PDE-100002243.  Google Scholar

[37]

F. Otto and M. Westdickenberg, Eulerian calculus for the contraction in the Wasserstein distance,, SIAM J. Math. Anal., 37 (2005), 1227–1255 (electronic). doi: 10.1137/050622420.  Google Scholar

[38]

G. Savaré, Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in RCD$ (K,\infty) $ metric measure spaces, Discrete Contin. Dyn. Syst., 34 (2014), 1641-1661.  doi: 10.3934/dcds.2014.34.1641.  Google Scholar

[39]

N. Shanmugalingam, Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana, 16 (2000), 243-279.  doi: 10.4171/RMI/275.  Google Scholar

[40]

K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math., 196 (2006), 65-131.  doi: 10.1007/s11511-006-0002-8.  Google Scholar

[41]

K.-T. Sturm and M.-K. von Renesse, Transport inequalities, gradient estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math., 58 (2005), 923-940.  doi: 10.1002/cpa.20060.  Google Scholar

[42]

C. Villani, Optimal Transport. Old and New, vol. 338 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.  Google Scholar

show all references

References:
[1]

L. Ambrosio, A. Mondino and G. Savaré, Nonlinear diffusion equations and curvature conditions in metric measure spaces,, Amer. Math. Soc., 262 (2019), v+121 pp. doi: 10.1090/memo/1270.  Google Scholar

[2]

L. AmbrosioM. Erbar and G. Savaré, Optimal transport, Cheeger energies and contractivity of dynamic transport distances in extended spaces, Nonlinear Anal., 137 (2016), 77-134.  doi: 10.1016/j.na.2015.12.006.  Google Scholar

[3]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.  Google Scholar

[4]

L. AmbrosioN. Gigli and G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 195 (2014), 289-391.  doi: 10.1007/s00222-013-0456-1.  Google Scholar

[5]

L. AmbrosioN. Gigli and G. Savaré, Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163 (2014), 1405-1490.  doi: 10.1215/00127094-2681605.  Google Scholar

[6]

L. AmbrosioN. Gigli and G. Savaré, Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab., 43 (2015), 339-404.  doi: 10.1214/14-AOP907.  Google Scholar

[7]

L. AmbrosioG. Savaré and L. Zambotti, Existence and stability for Fokker-Planck equations with log-concave reference measure, Probab. Theory Relat. Fields, 145 (2009), 517-564.  doi: 10.1007/s00440-008-0177-3.  Google Scholar

[8]

D. Bakry and M. Émery, Diffusions hypercontractives,, Séminaire de Probabilités de Strasbourg, 19 (1985), 177–206. doi: 10.1007/BFb0075847.  Google Scholar

[9]

D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, vol. 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Cham, 2014. doi: 10.1007/978-3-319-00227-9.  Google Scholar

[10]

D. BakryI. Gentil and M. Ledoux, On Harnack inequalities and optimal transportation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 14 (2015), 705-727.   Google Scholar

[11]

A. Björn and J. Björn, Nonlinear Potential Theory on Metric Spaces, vol. 17 of EMS Tracts in Mathematics, European Mathematical Society (EMS), Zürich, 2011. doi: 10.4171/099.  Google Scholar

[12]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973, North-Holland Mathematics Studies, No. 5. Notas de Matemática (50).  Google Scholar

[13]

J. A. CarrilloR. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., 179 (2006), 217-263.  doi: 10.1007/s00205-005-0386-1.  Google Scholar

[14]

L. ChizatG. PeyréB. Schmitzer and F.-X. Vialard, An interpolating distance between optimal transport and Fisher-Rao metrics, Found. Comput. Math., 18 (2018), 1-44.  doi: 10.1007/s10208-016-9331-y.  Google Scholar

[15]

L. ChizatG. PeyréB. Schmitzer and F.-X. Vialard, Unbalanced optimal transport: Dynamic and Kantorovich formulations, J. Funct. Anal., 274 (2018), 3090-3123.  doi: 10.1016/j.jfa.2018.03.008.  Google Scholar

[16]

I. Csiszár, Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hungar., 2 (1967), 299-318.   Google Scholar

[17]

S. Daneri and G. Savaré, Eulerian calculus for the displacement convexity in the Wasserstein distance, SIAM J. Math. Anal., 40 (2008), 1104-1122.  doi: 10.1137/08071346X.  Google Scholar

[18]

C. Dellacherie and P.-A. Meyer, Probabilities and Potential. C, vol. 151 of North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1988, Potential theory for discrete and continuous semigroups, Translated from the French by J. Norris.  Google Scholar

[19]

M. Erbar, The heat equation on manifolds as a gradient flow in the Wasserstein space, Annales de l'Institut Henri Poincaré - Probabilités et Statistiques, 46 (2010), 1-23.  doi: 10.1214/08-AIHP306.  Google Scholar

[20]

M. ErbarK. Kuwada and K.-T. Sturm, On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces, Invent. Math., 201 (2015), 993-1071.  doi: 10.1007/s00222-014-0563-7.  Google Scholar

[21]

N. GigliK. Kuwada and S. Ohta, Heat flow on Alexandrov spaces, Comm. Pure Appl. Math., 66 (2013), 307-331.  doi: 10.1002/cpa.21431.  Google Scholar

[22]

J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181 (1998), 1-61.  doi: 10.1007/BF02392747.  Google Scholar

[23]

J. Heinonen, P. Koskela, N. Shanmugalingam and J. T. Tyson, Sobolev Spaces on Metric Measure Spaces, vol. 27 of New Mathematical Monographs, Cambridge University Press, Cambridge, 2015, An approach based on upper gradients. doi: 10.1017/CBO9781316135914.  Google Scholar

[24]

E. Hellinger, Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen, J. Reine Angew. Math., 136 (1909), 210-271.  doi: 10.1515/crll.1909.136.210.  Google Scholar

[25]

R. JordanD. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM Journal on Mathematical Analysis, 29 (1998), 1-17.  doi: 10.1137/S0036141096303359.  Google Scholar

[26]

S. Kakutani, On equivalence of infinite product measures, Ann. of Math. (2), 49 (1948), 214-224.  doi: 10.2307/1969123.  Google Scholar

[27]

S. Kondratyev, L. Monsaingeon and D. Vorotnikov, A new optimal transport distance on the space of finite Radon measures, Adv. Differential Equations, 21 (2016), 1117–1164, URL http://projecteuclid.org/euclid.ade/1476369298.  Google Scholar

[28]

P. Koskela and P. MacManus, Quasiconformal mappings and Sobolev spaces, Studia Math., 131 (1998), 1-17.   Google Scholar

[29]

S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Statistics, 22 (1951), 79-86.  doi: 10.1214/aoms/1177729694.  Google Scholar

[30]

K. Kuwada, Duality on gradient estimates and Wasserstein controls, J. Funct. Anal., 258 (2010), 3758-3774.  doi: 10.1016/j.jfa.2010.01.010.  Google Scholar

[31]

M. LieroA. Mielke and G. Savaré, Optimal transport in competition with reaction: The Hellinger-Kantorovich distance and geodesic curves, SIAM J. Math. Anal., 48 (2016), 2869-2911.  doi: 10.1137/15M1041420.  Google Scholar

[32]

M. LieroA. Mielke and G. Savaré, Optimal entropy-transport problems and a new Hellinger-Kantorovich distance between positive measures, Invent. Math., 211 (2018), 969-1117.  doi: 10.1007/s00222-017-0759-8.  Google Scholar

[33]

F. Liese and I. Vajda, On divergences and informations in statistics and information theory, IEEE Trans. Inform. Theory, 52 (2006), 4394-4412.  doi: 10.1109/TIT.2006.881731.  Google Scholar

[34]

J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169 (2009), 903-991.  doi: 10.4007/annals.2009.169.903.  Google Scholar

[35]

F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), 361-400.  doi: 10.1006/jfan.1999.3557.  Google Scholar

[36]

F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174.  doi: 10.1081/PDE-100002243.  Google Scholar

[37]

F. Otto and M. Westdickenberg, Eulerian calculus for the contraction in the Wasserstein distance,, SIAM J. Math. Anal., 37 (2005), 1227–1255 (electronic). doi: 10.1137/050622420.  Google Scholar

[38]

G. Savaré, Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in RCD$ (K,\infty) $ metric measure spaces, Discrete Contin. Dyn. Syst., 34 (2014), 1641-1661.  doi: 10.3934/dcds.2014.34.1641.  Google Scholar

[39]

N. Shanmugalingam, Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana, 16 (2000), 243-279.  doi: 10.4171/RMI/275.  Google Scholar

[40]

K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math., 196 (2006), 65-131.  doi: 10.1007/s11511-006-0002-8.  Google Scholar

[41]

K.-T. Sturm and M.-K. von Renesse, Transport inequalities, gradient estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math., 58 (2005), 923-940.  doi: 10.1002/cpa.20060.  Google Scholar

[42]

C. Villani, Optimal Transport. Old and New, vol. 338 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.  Google Scholar

[1]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[2]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[3]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[4]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[5]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[6]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[7]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

[8]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[9]

Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201

[10]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[11]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[12]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[13]

Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193

[14]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[15]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[16]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[17]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[18]

Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405

[19]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[20]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (101)
  • HTML views (322)
  • Cited by (0)

Other articles
by authors

[Back to Top]