
-
Previous Article
Perturbed minimizing movements of families of functionals
- DCDS-S Home
- This Issue
-
Next Article
Existence of weak solutions for a sharp interface model for phase separation on biological membranes
Threshold phenomenon for homogenized fronts in random elastic media
1. | Abteilung für Angewandte Mathematik, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 10, 79104 Freiburg, Germany |
We consider a model for the motion of a phase interface in an elastic medium, for example, a twin boundary in martensite. The model is given by a semilinear parabolic equation with a fractional Laplacian as regularizing operator, stemming from the interaction of the front with its elastic environment. We show that the presence of randomly distributed, localized obstacles leads to a threshold phenomenon, i.e., stationary solutions exist up to a positive, critical driving force leading to a stick-slip behaviour of the phase boundary. The main result is proved by an explicit construction of a stationary viscosity supersolution to the evolution equation and is based on a percolation result for the obstacle sites. Furthermore, we derive a homogenization result for such fronts in the case of the half-Laplacian in the pinning regime.
References:
[1] |
C. Bucur,
Some observations on the Green function for the ball in the fractional Laplace framework, Commun. Pure Appl. Anal., 15 (2016), 657-699.
doi: 10.3934/cpaa.2016.15.657. |
[2] |
L. Caffarelli and L. Silvestre,
Regularity theory for fully nonlinear integro-differential equations, Communications on Pure and Applied Mathematics, 62 (2009), 597-638.
doi: 10.1002/cpa.20274. |
[3] |
L. Courte, K. Bhattacharya and P. Dondl, Bounds on precipitate hardening of line and surface defects in solids, (2019), arXiv: 1903.07505. Google Scholar |
[4] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[5] |
N. Dirr, P. W. Dondl and M. Scheutzow,
Pinning of interfaces in random media, Interfaces Free Bound., 13 (2011), 411-421.
doi: 10.4171/IFB/265. |
[6] |
P. W. Dondl and K. Bhattacharya,
Effective behavior of an interface propagating through a periodic elastic medium, Interfaces Free Bound., 18 (2016), 91-113.
doi: 10.4171/IFB/358. |
[7] |
P. W. Dondl, M. Scheutzow and S. Throm,
Pinning of interfaces in a random elastic medium and logarithmic lattice embeddings in percolation, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 481-512.
doi: 10.1017/S0308210512001291. |
[8] |
J. Droniou and C. Imbert,
Fractal first-order partial differential equations, Archive For Rational Mechanics And Analysis, 182 (2006), 299-331.
doi: 10.1007/s00205-006-0429-2. |
[9] |
R. K. Getoor,
First passage times for symmetric stable processes in space, Trans. Amer. Math. Soc., 101 (1961), 75-90.
doi: 10.1090/S0002-9947-1961-0137148-5. |
[10] |
M. Koslowski, A. M. Cuitiño and M. Ortiz,
A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals, J. Mech. Phys. Solids, 50 (2002), 2597-2635.
doi: 10.1016/S0022-5096(02)00037-6. |
[11] |
R. Monneau and S. Patrizi,
Derivation of Orowan's law from the Peierls-Nabarro model, Comm. Partial Differential Equations, 37 (2012), 1887-1911.
doi: 10.1080/03605302.2012.683504. |
[12] |
S. Moulinet, C. Guthmann and E. Rolley,
Roughness and dynamics of a contact line of a viscous fluid on a disordered substrate, The European Physical Journal E, 8 (2002), 437-443.
doi: 10.1140/epje/i2002-10032-2. |
[13] |
C. Pozrikidis, The Fractional Laplacian, CRC Press, Boca Raton, FL, 2016.
doi: 10.1201/b19666.![]() ![]() |
[14] |
X. Ros-Oton,
Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat., 60 (2016), 3-26.
doi: 10.5565/PUBLMAT_60116_01. |
[15] |
X. Ros-Oton and J. Serra,
The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl. (9), 101 (2014), 275-302.
doi: 10.1016/j.matpur.2013.06.003. |
[16] |
J. Schmittbuhl, A. Delaplace, K. J. Mäløy, H. Perfettini and J. P. Vilotte,
Slow crack propagation and slip correlations, Pure And Applied Geophysics, 160 (2003), 961-976.
doi: 10.1007/978-3-0348-8083-1_10. |
[17] |
J. Schmittbuhl, S. Roux, J.-P. Vilotte and K. Maloy,
Interfacial crack pinning: Effect of nonlocal interactions, Physical Review Letters, 74 (1995), 1787-1790.
doi: 10.1103/PhysRevLett.74.1787. |
[18] |
R. Servadei and E. Valdinoci,
On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831-855.
doi: 10.1017/S0308210512001783. |
[19] |
S. Throm, Pinning of Interfaces in a Random Elastic Medium, Master's Thesis, Ruprecht Karls Universität Heidelberg, 2012. Google Scholar |
show all references
References:
[1] |
C. Bucur,
Some observations on the Green function for the ball in the fractional Laplace framework, Commun. Pure Appl. Anal., 15 (2016), 657-699.
doi: 10.3934/cpaa.2016.15.657. |
[2] |
L. Caffarelli and L. Silvestre,
Regularity theory for fully nonlinear integro-differential equations, Communications on Pure and Applied Mathematics, 62 (2009), 597-638.
doi: 10.1002/cpa.20274. |
[3] |
L. Courte, K. Bhattacharya and P. Dondl, Bounds on precipitate hardening of line and surface defects in solids, (2019), arXiv: 1903.07505. Google Scholar |
[4] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[5] |
N. Dirr, P. W. Dondl and M. Scheutzow,
Pinning of interfaces in random media, Interfaces Free Bound., 13 (2011), 411-421.
doi: 10.4171/IFB/265. |
[6] |
P. W. Dondl and K. Bhattacharya,
Effective behavior of an interface propagating through a periodic elastic medium, Interfaces Free Bound., 18 (2016), 91-113.
doi: 10.4171/IFB/358. |
[7] |
P. W. Dondl, M. Scheutzow and S. Throm,
Pinning of interfaces in a random elastic medium and logarithmic lattice embeddings in percolation, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 481-512.
doi: 10.1017/S0308210512001291. |
[8] |
J. Droniou and C. Imbert,
Fractal first-order partial differential equations, Archive For Rational Mechanics And Analysis, 182 (2006), 299-331.
doi: 10.1007/s00205-006-0429-2. |
[9] |
R. K. Getoor,
First passage times for symmetric stable processes in space, Trans. Amer. Math. Soc., 101 (1961), 75-90.
doi: 10.1090/S0002-9947-1961-0137148-5. |
[10] |
M. Koslowski, A. M. Cuitiño and M. Ortiz,
A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals, J. Mech. Phys. Solids, 50 (2002), 2597-2635.
doi: 10.1016/S0022-5096(02)00037-6. |
[11] |
R. Monneau and S. Patrizi,
Derivation of Orowan's law from the Peierls-Nabarro model, Comm. Partial Differential Equations, 37 (2012), 1887-1911.
doi: 10.1080/03605302.2012.683504. |
[12] |
S. Moulinet, C. Guthmann and E. Rolley,
Roughness and dynamics of a contact line of a viscous fluid on a disordered substrate, The European Physical Journal E, 8 (2002), 437-443.
doi: 10.1140/epje/i2002-10032-2. |
[13] |
C. Pozrikidis, The Fractional Laplacian, CRC Press, Boca Raton, FL, 2016.
doi: 10.1201/b19666.![]() ![]() |
[14] |
X. Ros-Oton,
Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat., 60 (2016), 3-26.
doi: 10.5565/PUBLMAT_60116_01. |
[15] |
X. Ros-Oton and J. Serra,
The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl. (9), 101 (2014), 275-302.
doi: 10.1016/j.matpur.2013.06.003. |
[16] |
J. Schmittbuhl, A. Delaplace, K. J. Mäløy, H. Perfettini and J. P. Vilotte,
Slow crack propagation and slip correlations, Pure And Applied Geophysics, 160 (2003), 961-976.
doi: 10.1007/978-3-0348-8083-1_10. |
[17] |
J. Schmittbuhl, S. Roux, J.-P. Vilotte and K. Maloy,
Interfacial crack pinning: Effect of nonlocal interactions, Physical Review Letters, 74 (1995), 1787-1790.
doi: 10.1103/PhysRevLett.74.1787. |
[18] |
R. Servadei and E. Valdinoci,
On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831-855.
doi: 10.1017/S0308210512001783. |
[19] |
S. Throm, Pinning of Interfaces in a Random Elastic Medium, Master's Thesis, Ruprecht Karls Universität Heidelberg, 2012. Google Scholar |


[1] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[2] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[3] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[4] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[5] |
Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294 |
[6] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[7] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[8] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[9] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[10] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[11] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[12] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[13] |
Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61 |
[14] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[15] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[16] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[17] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[18] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[19] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[20] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]