• Previous Article
    Higher order convergence for a class of set differential equations with initial conditions
  • DCDS-S Home
  • This Issue
  • Next Article
    Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting
September  2021, 14(9): 3223-3231. doi: 10.3934/dcdss.2020336

New results for oscillation of fractional partial differential equations with damping term

1. 

College of Mathematics and Statistics, Hengyang Normal University, Hengyang, Hunan 421002, P. R. China

2. 

Hunan Provincial Key Laboratory of Intelligent Information, Processing and Application, Hengyang, 421002, P. R. China

* Corresponding author: Zhenguo Luo

Received  March 2019 Revised  September 2019 Published  September 2021 Early access  April 2020

Fund Project: The authors are supported by Hunan Provincial Natural Science Foundation of China (2019JJ40004, 2018JJ2006), the Project Supported by Scientific Research Fund of Hunan Provincial Education Department (17A030, 16A031), the Project of "Double First-Class" Applied Characteristic Discipline in Hunan Province (Xiangjiaotong[2018]469), the Project of Hunan Provincial Key Laboratory (2016TP1020) and the Open Fund Project of Hunan Provincial Key Laboratory of Intelligent Information Processing and Application for Hengyang Normal University (IIPA18K05), the training target of the young backbone teachers in Hunan colleges and Universities ([2015]361)

In this paper, we study the oscillatory behavior of solutions of a class of damped fractional partial differential equations subject to Robin and Dirichlet boundary value conditions. By using integral averaging technique and Riccati type transformations, we obtain some new sufficient conditions for oscillation of all solutions of this kind of fractional differential equations with damping term. Our results essentially enrich the ones in the existing literature. Finally, we also give two specific examples to illustrate our main results.

Citation: Liping Luo, Zhenguo Luo, Yunhui Zeng. New results for oscillation of fractional partial differential equations with damping term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3223-3231. doi: 10.3934/dcdss.2020336
References:
[1]

S. Abbas, M. Benchohra and G. M. N'Guérékata, Topics in Fractional Differential Equations, Developments in Mathematics, 27. Springer, New York, 2012. doi: 10.1007/978-1-4614-4036-9.

[2]

D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus. Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, 3. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. doi: 10.1142/9789814355216.

[3]

C. C. Bernido and M. V. Carpio-Bernido, Analysis of Fractional Stochastic Processes: Advances and Applications, Conference Series, 36. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. doi: 10.1142/9257.

[4]

S. T. ChenX. H. Tang and J. S. Yu, Sign-changing ground state solutions for discrete nonlinear Schrodinger equations, J. Difference Equ. Appl., 25 (2019), 202-218.  doi: 10.1080/10236198.2018.1563601.

[5]

S. S. Chen and J. S. Yu, Stability and bifurcation on predator-prey systems with nonlocal prey competition, Discrete and Continuous Dynamical Systems, 38 (2018), 43-62.  doi: 10.3934/dcds.2018002.

[6]

R. Courant and D. Hilbert, Methods of Mathematical Physics. II: Partial Differential Equations, Interscience Publishers, New York-London, 1962.

[7]

S. Das, Functional Fractional Calculus for System Identification and Controls, Springer, Berlin, 2008.

[8]

K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.

[9]

L. ErbeB. G. Jia and Q. Q. Zhang, Homoclinic solutions of discrete nonlinear systems via variational method, J. Appl.Anal. Comput., 9 (2019), 271-294.  doi: 10.11948/2019.271.

[10]

Z. M. Guo and J. S. Yu, Existence of periodic and subharmonic solutions for second order superlinear difference equations, Sci. China Ser. A, 46 (2003), 506-515.  doi: 10.1007/BF02884022.

[11]

Z. M. Guo and J. S. Yu, The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc., 68 (2003), 419-430.  doi: 10.1112/S0024610703004563.

[12]

I. Györi and G. Ladas, Oscillation Theory of Delay Differntial Equations: with Applications, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991.

[13]

S. HarikrishnanP. Prakash and J. J. Nieto, Foreced oscillation of solutions of a nonlinear fractional partial differential equation, Appl. Math. Comput., 254 (2015), 14-19.  doi: 10.1016/j.amc.2014.12.074.

[14] J. H. HuangL. Xin and T. L. Shen, Dynamics of Fractional Partial Differential Equations, Science Press, Beijing, 2017. 
[15]

Y. X. HuiG. H. Lin and Q. W. Sun, Oscillation threshold for a mosquito population suppression model with time delay, Mathematical Biosciences and Engineering, 16 (2019), 7362-7374.  doi: 10.3934/mbe.2019367.

[16]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

[17]

W. N. Li, On the forced oscillation of certain fractional partial differential equations, Appl. Math. Lett., 50 (2015), 5-9.  doi: 10.1016/j.aml.2015.05.016.

[18]

W. N. Li, Forced oscillation criteria for a class of fractional partial differential equations with damping term, Mathematical Problems in Engineering, 2015 (2015), 1-6. doi: 10.1155/2015/410904.

[19]

W. N. Li, Oscillation of solutions for certain fractional partial differential equations, Advances in Difference Equations, 2016 (2016), 1-8. doi: 10.1186/s13662-016-0756-z.

[20]

W. N. Li and W. H. Sheng, Oscillation properties for solutions of a kind of partial fractional differential equations with damping term, J. Nonlinear Sci. Appl., 9 (2016), 1600-1608.  doi: 10.22436/jnsa.009.04.17.

[21]

I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.

[22]

P. Prakash, S. Harikrishnan, J. J. Nieto and J.-H. Kim, Oscillation of a time fractional partial differential equation, Electron. J. Qual. Theory Differ. Equ., 15 (2014), 1-10.

[23]

P. PrakashS. Harikrishnan and M. Benchohra, Oscillation of certain nonlinear fractional partial differential equation with damping term, Appl. Math. Lett., 43 (2015), 72-79.  doi: 10.1016/j.aml.2014.11.018.

[24]

A. Raheem and Md. Maqbul, Oscillation criteria for impulsive partial fractional differential equations, Computers and Mathematics with Applications, 73 (2017), 1781-1788.  doi: 10.1016/j.camwa.2017.02.016.

[25]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.

[26]

X. H. TangX. Y. Lin and J. S. Yu, Nontrivial solutions for Schrodinger equation with local super-quadratic conditions, J. Dyn. Diff. Equat., 31 (2019), 369-383.  doi: 10.1007/s10884-018-9662-2.

[27] V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, Higher Education Press, Beijing, 2010.  doi: 10.1007/978-3-642-14003-7.
[28]

J. S. Yu, Modeling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168-3187.  doi: 10.1137/18M1204917.

[29]

J. S. Yu and B. Zheng, Modeling Wolbachia infection in mosquito population via discrete dynamical model, J. Difference Equ. Appl., 25 (2019), 1549-1567.  doi: 10.1080/10236198.2019.1669578.

[30]

Q. Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions, Communications on Pure and Applied Analysis, 18 (2019), 425-434.  doi: 10.3934/cpaa.2019021.

[31]

Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd., Singapore, 2014.

show all references

References:
[1]

S. Abbas, M. Benchohra and G. M. N'Guérékata, Topics in Fractional Differential Equations, Developments in Mathematics, 27. Springer, New York, 2012. doi: 10.1007/978-1-4614-4036-9.

[2]

D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus. Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, 3. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. doi: 10.1142/9789814355216.

[3]

C. C. Bernido and M. V. Carpio-Bernido, Analysis of Fractional Stochastic Processes: Advances and Applications, Conference Series, 36. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. doi: 10.1142/9257.

[4]

S. T. ChenX. H. Tang and J. S. Yu, Sign-changing ground state solutions for discrete nonlinear Schrodinger equations, J. Difference Equ. Appl., 25 (2019), 202-218.  doi: 10.1080/10236198.2018.1563601.

[5]

S. S. Chen and J. S. Yu, Stability and bifurcation on predator-prey systems with nonlocal prey competition, Discrete and Continuous Dynamical Systems, 38 (2018), 43-62.  doi: 10.3934/dcds.2018002.

[6]

R. Courant and D. Hilbert, Methods of Mathematical Physics. II: Partial Differential Equations, Interscience Publishers, New York-London, 1962.

[7]

S. Das, Functional Fractional Calculus for System Identification and Controls, Springer, Berlin, 2008.

[8]

K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.

[9]

L. ErbeB. G. Jia and Q. Q. Zhang, Homoclinic solutions of discrete nonlinear systems via variational method, J. Appl.Anal. Comput., 9 (2019), 271-294.  doi: 10.11948/2019.271.

[10]

Z. M. Guo and J. S. Yu, Existence of periodic and subharmonic solutions for second order superlinear difference equations, Sci. China Ser. A, 46 (2003), 506-515.  doi: 10.1007/BF02884022.

[11]

Z. M. Guo and J. S. Yu, The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc., 68 (2003), 419-430.  doi: 10.1112/S0024610703004563.

[12]

I. Györi and G. Ladas, Oscillation Theory of Delay Differntial Equations: with Applications, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991.

[13]

S. HarikrishnanP. Prakash and J. J. Nieto, Foreced oscillation of solutions of a nonlinear fractional partial differential equation, Appl. Math. Comput., 254 (2015), 14-19.  doi: 10.1016/j.amc.2014.12.074.

[14] J. H. HuangL. Xin and T. L. Shen, Dynamics of Fractional Partial Differential Equations, Science Press, Beijing, 2017. 
[15]

Y. X. HuiG. H. Lin and Q. W. Sun, Oscillation threshold for a mosquito population suppression model with time delay, Mathematical Biosciences and Engineering, 16 (2019), 7362-7374.  doi: 10.3934/mbe.2019367.

[16]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

[17]

W. N. Li, On the forced oscillation of certain fractional partial differential equations, Appl. Math. Lett., 50 (2015), 5-9.  doi: 10.1016/j.aml.2015.05.016.

[18]

W. N. Li, Forced oscillation criteria for a class of fractional partial differential equations with damping term, Mathematical Problems in Engineering, 2015 (2015), 1-6. doi: 10.1155/2015/410904.

[19]

W. N. Li, Oscillation of solutions for certain fractional partial differential equations, Advances in Difference Equations, 2016 (2016), 1-8. doi: 10.1186/s13662-016-0756-z.

[20]

W. N. Li and W. H. Sheng, Oscillation properties for solutions of a kind of partial fractional differential equations with damping term, J. Nonlinear Sci. Appl., 9 (2016), 1600-1608.  doi: 10.22436/jnsa.009.04.17.

[21]

I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.

[22]

P. Prakash, S. Harikrishnan, J. J. Nieto and J.-H. Kim, Oscillation of a time fractional partial differential equation, Electron. J. Qual. Theory Differ. Equ., 15 (2014), 1-10.

[23]

P. PrakashS. Harikrishnan and M. Benchohra, Oscillation of certain nonlinear fractional partial differential equation with damping term, Appl. Math. Lett., 43 (2015), 72-79.  doi: 10.1016/j.aml.2014.11.018.

[24]

A. Raheem and Md. Maqbul, Oscillation criteria for impulsive partial fractional differential equations, Computers and Mathematics with Applications, 73 (2017), 1781-1788.  doi: 10.1016/j.camwa.2017.02.016.

[25]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.

[26]

X. H. TangX. Y. Lin and J. S. Yu, Nontrivial solutions for Schrodinger equation with local super-quadratic conditions, J. Dyn. Diff. Equat., 31 (2019), 369-383.  doi: 10.1007/s10884-018-9662-2.

[27] V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, Higher Education Press, Beijing, 2010.  doi: 10.1007/978-3-642-14003-7.
[28]

J. S. Yu, Modeling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168-3187.  doi: 10.1137/18M1204917.

[29]

J. S. Yu and B. Zheng, Modeling Wolbachia infection in mosquito population via discrete dynamical model, J. Difference Equ. Appl., 25 (2019), 1549-1567.  doi: 10.1080/10236198.2019.1669578.

[30]

Q. Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions, Communications on Pure and Applied Analysis, 18 (2019), 425-434.  doi: 10.3934/cpaa.2019021.

[31]

Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd., Singapore, 2014.

[1]

Yuri V. Rogovchenko, Fatoş Tuncay. Interval oscillation of a second order nonlinear differential equation with a damping term. Conference Publications, 2007, 2007 (Special) : 883-891. doi: 10.3934/proc.2007.2007.883

[2]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[3]

T. Candan, R.S. Dahiya. Oscillation of mixed neutral differential equations with forcing term. Conference Publications, 2003, 2003 (Special) : 167-172. doi: 10.3934/proc.2003.2003.167

[4]

Peng Gao. Averaging principle for stochastic Kuramoto-Sivashinsky equation with a fast oscillation. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5649-5684. doi: 10.3934/dcds.2018247

[5]

Ruy Coimbra Charão, Juan Torres Espinoza, Ryo Ikehata. A second order fractional differential equation under effects of a super damping. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4433-4454. doi: 10.3934/cpaa.2020202

[6]

Xudong Luo, Qiaozhen Ma. The existence of time-dependent attractor for wave equation with fractional damping and lower regular forcing term. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021253

[7]

Alain Haraux, Mohamed Ali Jendoubi. Asymptotics for a second order differential equation with a linear, slowly time-decaying damping term. Evolution Equations and Control Theory, 2013, 2 (3) : 461-470. doi: 10.3934/eect.2013.2.461

[8]

Litan Yan, Xiuwei Yin. Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 615-635. doi: 10.3934/dcdsb.2018199

[9]

Xuefeng Zhang, Hui Yan. Image enhancement algorithm using adaptive fractional differential mask technique. Mathematical Foundations of Computing, 2019, 2 (4) : 347-359. doi: 10.3934/mfc.2019022

[10]

Zoltan Satmari. Iterative Bernstein splines technique applied to fractional order differential equations. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021039

[11]

Natalia Skripnik. Averaging of fuzzy integral equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1999-2010. doi: 10.3934/dcdsb.2017118

[12]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023

[13]

Stanisław Migórski, Shengda Zeng. The Rothe method for multi-term time fractional integral diffusion equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 719-735. doi: 10.3934/dcdsb.2018204

[14]

Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks and Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014

[15]

Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations and Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017

[16]

Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543

[17]

Farid Tari. Geometric properties of the integral curves of an implicit differential equation. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 349-364. doi: 10.3934/dcds.2007.17.349

[18]

Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459

[19]

Avner Friedman, Harsh Vardhan Jain. A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 591-608. doi: 10.3934/mbe.2013.10.591

[20]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (375)
  • HTML views (604)
  • Cited by (0)

Other articles
by authors

[Back to Top]