September  2021, 14(9): 3183-3196. doi: 10.3934/dcdss.2020338

Positive solutions of the discrete Robin problem with $ \phi $-Laplacian

1. 

School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China

2. 

Center for Applied Mathematics Guangzhou University Guangzhou 510006, China

* Corresponding author: Zhan Zhou

Received  April 2019 Revised  October 2019 Published  September 2021 Early access  April 2020

In this paper, by using critical point theory, we obtain some sufficient conditions on the existence of infinitely many positive solutions of the discrete Robin problem with $ \phi $-Laplacian. We show that, an unbounded sequence of positive solutions and a sequence of positive solutions which converges to zero will emerge from the suitable oscillating behavior of the nonlinear term at infinity and at the zero, respectively. We also give two examples to illustrate our main results.

Citation: Jiaoxiu Ling, Zhan Zhou. Positive solutions of the discrete Robin problem with $ \phi $-Laplacian. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3183-3196. doi: 10.3934/dcdss.2020338
References:
[1]

R. P. Agarwal, D. O'Regan and J. Y. P. Wong, Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic Publishers, Dordrecht, 1999. doi: 10.1007/978-94-015-9171-3.

[2]

R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods, and Applications, Second edition, Monographs and Textbooks in Pure and Applied Mathematics, 228. Marcel Dekker, Inc., New York, 2000.

[3]

Z. BalanovC. Garcia-Azpeitia and W. Krawcewicz, On variational and topological methods in nonlinear difference equations, Communications on Pure and Applied Analysis, 17 (2018), 2813-2844.  doi: 10.3934/cpaa.2018133.

[4]

C. Bereanu and J. Mawhin, Boundary value problems for second-order nonlinear difference equations with discrete $\phi$-Laplacian and singular $\phi$, Journal of Difference Equations and Applications, 14 (2008), 1099-1118.  doi: 10.1080/10236190802332290.

[5]

G. Bonanno and P. Candito, Infinitely many solutions for a class of discrete non-linear boundary value problems, Applicable Analysis, 88 (2009), 605-616.  doi: 10.1080/00036810902942242.

[6]

G. BonannoR. Livrea and J. Mawhin, Existence results for parametric boundary value problems involving the mean curvature operator, Nonlinear Differential Equations and Applications, 22 (2015), 411-426.  doi: 10.1007/s00030-014-0289-7.

[7]

G. BonannoP. Jebelean and C. Şerban, Superlinear discrete problems, Applied Mathematics Letters, 52 (2016), 162-168.  doi: 10.1016/j.aml.2015.09.005.

[8]

D. BonheureP. HabetsF. Obersnel and P. Omari, Classical and non-classical solutions of a prescribed curvature equation, Journal of Differential Equations, 243 (2007), 208-237.  doi: 10.1016/j.jde.2007.05.031.

[9]

G. D'AguìaJ. Mawhin and A. Sciammetta, Positive solutions for a discrete two point nonlinear boundary value problem with $p$-Laplacian, Journal of Mathematical Analysis and Applications, 447 (2017), 383-397.  doi: 10.1016/j.jmaa.2016.10.023.

[10]

L. ErbeB. G. Jia and Q. Q. Zhang, Homoclinic solutions of discrete nonlinear systems via variational method, Journal of Applied Analysis and Computation, 9 (2019), 271-294.  doi: 10.11948/2019.271.

[11]

Z. M. Guo and J. S. Yu, Existence of periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China Ser. A, 46 (2003), 506-515.  doi: 10.1007/BF02884022.

[12]

J. Henderson and H. B. Thompson, Existence of multiple solutions for second order discrete boundary value problems, Computers and Mathematics with Applications, 43 (2002), 1239-1248.  doi: 10.1016/S0898-1221(02)00095-0.

[13]

G. H. Lin and Z. Zhou, Homoclinic solutions of discrete $\phi$-Laplacian equations with mixed nonlinearities, Communications on Pure and Applied Analysis, 17 (2018), 1723-1747.  doi: 10.3934/cpaa.2018082.

[14]

G. H. Lin, Z. Zhou and J. S. Yu, Ground state solutions of discrete asymptotically linear Schrödinge equations with bounded and non-periodic potentials, Journal of Dynamics and Differential Equations, (2019). https://doi.org/10.1007/s10884-019-09743-4.

[15]

J. X. Ling and Z. Zhou, Positive solutions of the discrete Dirichlet problem involving the mean curvature operator, Open Mathematics, 17 (2019), 1055-1064.  doi: 10.1515/math-2019-0081.

[16]

Y. H. Long and B. L. Zeng, Multiple and sign-changing solutions for discrete Robin boundary value problem with parameter dependence, Open Mathematics, 15 (2017), 1549-1557.  doi: 10.1515/math-2017-0129.

[17] W. G. Kelly and A. C. Peterson, Difference Equations: An Introduction with Applications, Academic Press, Inc., Boston, MA, 1991. 
[18]

J. Mawhin, Periodic solutions of second order nonlinear difference systems with $\phi$-Laplacian: A variational approach, Nonlinear Analysis, 75 (2012), 4672-4687.  doi: 10.1016/j.na.2011.11.018.

[19]

F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation, Journal of Differential Equations, 249 (2010), 1674-1725.  doi: 10.1016/j.jde.2010.07.001.

[20]

B. Ricceri, A general variational principle and some of its applications, Journal of Computational and Applied Mathematics, 133 (2000), 401-410.  doi: 10.1016/S0377-0427(99)00269-1.

[21]

H. P. Shi, Periodic and subharmonic solutions for second-order nonlinear difference equations, Journal of Applied Mathematics and Computing, 48 (2015), 157-171.  doi: 10.1007/s12190-014-0796-z.

[22]

X. H. Tang, Non-Nehari manifold method for periodic discrete superlinear Schrödinger equation, Acta Math. Sin. (Engl. Ser.), 32 (2016), 463-473.  doi: 10.1007/s10114-016-4262-8.

[23]

J. S. Yu and B. Zheng, Modeling Wolbachia infection in mosquito population via discrete dynamical model, Journal of Difference Equations and Applications, 25 (2019), 1549-1567.  doi: 10.1080/10236198.2019.1669578.

[24]

Q. Q. Zhang, Homoclinic orbits for a class of discrete periodic Hamiltonian systems, Proceedings of the American Mathematical Society, 143 (2015), 3155-3163.  doi: 10.1090/S0002-9939-2015-12107-7.

[25]

Q. Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part, Communications on Pure and Applied Analysis, 14 (2015), 1929-1940.  doi: 10.3934/cpaa.2015.14.1929.

[26]

Q. Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions, Communications on Pure and Applied Analysis, 18 (2019), 425-434.  doi: 10.3934/cpaa.2019021.

[27]

Z. ZhouJ. S. Yu and Y. M. Chen, Homoclinic solutions in periodic difference equations with saturable nonlinearity, Science China Mathematics, 54 (2011), 83-93.  doi: 10.1007/s11425-010-4101-9.

[28]

Z. Zhou and J. S. Yu, Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity, Acta Math. Sin. (Engl. Ser.), 29 (2013), 1809-1822.  doi: 10.1007/s10114-013-0736-0.

[29]

Z. Zhou and D. F. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Science China Mathematics, 58 (2015), 781-790.  doi: 10.1007/s11425-014-4883-2.

[30]

Z. Zhou and M. T. Su, Boundary value problems for 2$n$th-order $\phi_{c}$-Laplacian difference equations containing both advance and retardation, Applied Mathematics Letters, 41 (2015), 7-11. doi: 10.1016/j.aml.2014.10.006.

[31]

Z. Zhou and J. X. Ling, Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with $\phi_c$-Laplacian, Applied Mathematics Letters, 91 (2019), 28-34.  doi: 10.1016/j.aml.2018.11.016.

show all references

References:
[1]

R. P. Agarwal, D. O'Regan and J. Y. P. Wong, Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic Publishers, Dordrecht, 1999. doi: 10.1007/978-94-015-9171-3.

[2]

R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods, and Applications, Second edition, Monographs and Textbooks in Pure and Applied Mathematics, 228. Marcel Dekker, Inc., New York, 2000.

[3]

Z. BalanovC. Garcia-Azpeitia and W. Krawcewicz, On variational and topological methods in nonlinear difference equations, Communications on Pure and Applied Analysis, 17 (2018), 2813-2844.  doi: 10.3934/cpaa.2018133.

[4]

C. Bereanu and J. Mawhin, Boundary value problems for second-order nonlinear difference equations with discrete $\phi$-Laplacian and singular $\phi$, Journal of Difference Equations and Applications, 14 (2008), 1099-1118.  doi: 10.1080/10236190802332290.

[5]

G. Bonanno and P. Candito, Infinitely many solutions for a class of discrete non-linear boundary value problems, Applicable Analysis, 88 (2009), 605-616.  doi: 10.1080/00036810902942242.

[6]

G. BonannoR. Livrea and J. Mawhin, Existence results for parametric boundary value problems involving the mean curvature operator, Nonlinear Differential Equations and Applications, 22 (2015), 411-426.  doi: 10.1007/s00030-014-0289-7.

[7]

G. BonannoP. Jebelean and C. Şerban, Superlinear discrete problems, Applied Mathematics Letters, 52 (2016), 162-168.  doi: 10.1016/j.aml.2015.09.005.

[8]

D. BonheureP. HabetsF. Obersnel and P. Omari, Classical and non-classical solutions of a prescribed curvature equation, Journal of Differential Equations, 243 (2007), 208-237.  doi: 10.1016/j.jde.2007.05.031.

[9]

G. D'AguìaJ. Mawhin and A. Sciammetta, Positive solutions for a discrete two point nonlinear boundary value problem with $p$-Laplacian, Journal of Mathematical Analysis and Applications, 447 (2017), 383-397.  doi: 10.1016/j.jmaa.2016.10.023.

[10]

L. ErbeB. G. Jia and Q. Q. Zhang, Homoclinic solutions of discrete nonlinear systems via variational method, Journal of Applied Analysis and Computation, 9 (2019), 271-294.  doi: 10.11948/2019.271.

[11]

Z. M. Guo and J. S. Yu, Existence of periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China Ser. A, 46 (2003), 506-515.  doi: 10.1007/BF02884022.

[12]

J. Henderson and H. B. Thompson, Existence of multiple solutions for second order discrete boundary value problems, Computers and Mathematics with Applications, 43 (2002), 1239-1248.  doi: 10.1016/S0898-1221(02)00095-0.

[13]

G. H. Lin and Z. Zhou, Homoclinic solutions of discrete $\phi$-Laplacian equations with mixed nonlinearities, Communications on Pure and Applied Analysis, 17 (2018), 1723-1747.  doi: 10.3934/cpaa.2018082.

[14]

G. H. Lin, Z. Zhou and J. S. Yu, Ground state solutions of discrete asymptotically linear Schrödinge equations with bounded and non-periodic potentials, Journal of Dynamics and Differential Equations, (2019). https://doi.org/10.1007/s10884-019-09743-4.

[15]

J. X. Ling and Z. Zhou, Positive solutions of the discrete Dirichlet problem involving the mean curvature operator, Open Mathematics, 17 (2019), 1055-1064.  doi: 10.1515/math-2019-0081.

[16]

Y. H. Long and B. L. Zeng, Multiple and sign-changing solutions for discrete Robin boundary value problem with parameter dependence, Open Mathematics, 15 (2017), 1549-1557.  doi: 10.1515/math-2017-0129.

[17] W. G. Kelly and A. C. Peterson, Difference Equations: An Introduction with Applications, Academic Press, Inc., Boston, MA, 1991. 
[18]

J. Mawhin, Periodic solutions of second order nonlinear difference systems with $\phi$-Laplacian: A variational approach, Nonlinear Analysis, 75 (2012), 4672-4687.  doi: 10.1016/j.na.2011.11.018.

[19]

F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation, Journal of Differential Equations, 249 (2010), 1674-1725.  doi: 10.1016/j.jde.2010.07.001.

[20]

B. Ricceri, A general variational principle and some of its applications, Journal of Computational and Applied Mathematics, 133 (2000), 401-410.  doi: 10.1016/S0377-0427(99)00269-1.

[21]

H. P. Shi, Periodic and subharmonic solutions for second-order nonlinear difference equations, Journal of Applied Mathematics and Computing, 48 (2015), 157-171.  doi: 10.1007/s12190-014-0796-z.

[22]

X. H. Tang, Non-Nehari manifold method for periodic discrete superlinear Schrödinger equation, Acta Math. Sin. (Engl. Ser.), 32 (2016), 463-473.  doi: 10.1007/s10114-016-4262-8.

[23]

J. S. Yu and B. Zheng, Modeling Wolbachia infection in mosquito population via discrete dynamical model, Journal of Difference Equations and Applications, 25 (2019), 1549-1567.  doi: 10.1080/10236198.2019.1669578.

[24]

Q. Q. Zhang, Homoclinic orbits for a class of discrete periodic Hamiltonian systems, Proceedings of the American Mathematical Society, 143 (2015), 3155-3163.  doi: 10.1090/S0002-9939-2015-12107-7.

[25]

Q. Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part, Communications on Pure and Applied Analysis, 14 (2015), 1929-1940.  doi: 10.3934/cpaa.2015.14.1929.

[26]

Q. Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions, Communications on Pure and Applied Analysis, 18 (2019), 425-434.  doi: 10.3934/cpaa.2019021.

[27]

Z. ZhouJ. S. Yu and Y. M. Chen, Homoclinic solutions in periodic difference equations with saturable nonlinearity, Science China Mathematics, 54 (2011), 83-93.  doi: 10.1007/s11425-010-4101-9.

[28]

Z. Zhou and J. S. Yu, Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity, Acta Math. Sin. (Engl. Ser.), 29 (2013), 1809-1822.  doi: 10.1007/s10114-013-0736-0.

[29]

Z. Zhou and D. F. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Science China Mathematics, 58 (2015), 781-790.  doi: 10.1007/s11425-014-4883-2.

[30]

Z. Zhou and M. T. Su, Boundary value problems for 2$n$th-order $\phi_{c}$-Laplacian difference equations containing both advance and retardation, Applied Mathematics Letters, 41 (2015), 7-11. doi: 10.1016/j.aml.2014.10.006.

[31]

Z. Zhou and J. X. Ling, Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with $\phi_c$-Laplacian, Applied Mathematics Letters, 91 (2019), 28-34.  doi: 10.1016/j.aml.2018.11.016.

[1]

Wenying Feng. Solutions and positive solutions for some three-point boundary value problems. Conference Publications, 2003, 2003 (Special) : 263-272. doi: 10.3934/proc.2003.2003.263

[2]

J. R. L. Webb. Remarks on positive solutions of some three point boundary value problems. Conference Publications, 2003, 2003 (Special) : 905-915. doi: 10.3934/proc.2003.2003.905

[3]

Petru Jebelean. Infinitely many solutions for ordinary $p$-Laplacian systems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2008, 7 (2) : 267-275. doi: 10.3934/cpaa.2008.7.267

[4]

John R. Graef, Bo Yang. Multiple positive solutions to a three point third order boundary value problem. Conference Publications, 2005, 2005 (Special) : 337-344. doi: 10.3934/proc.2005.2005.337

[5]

John R. Graef, Johnny Henderson, Bo Yang. Positive solutions to a fourth order three point boundary value problem. Conference Publications, 2009, 2009 (Special) : 269-275. doi: 10.3934/proc.2009.2009.269

[6]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many radial solutions of a non--homogeneous $p$--Laplacian problem. Conference Publications, 2013, 2013 (special) : 51-59. doi: 10.3934/proc.2013.2013.51

[7]

Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$-Laplacian. Communications on Pure and Applied Analysis, 2004, 3 (4) : 729-756. doi: 10.3934/cpaa.2004.3.729

[8]

John R. Graef, Lingju Kong. Uniqueness and parameter dependence of positive solutions of third order boundary value problems with $p$-laplacian. Conference Publications, 2011, 2011 (Special) : 515-522. doi: 10.3934/proc.2011.2011.515

[9]

Leszek Gasiński. Positive solutions for resonant boundary value problems with the scalar p-Laplacian and nonsmooth potential. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 143-158. doi: 10.3934/dcds.2007.17.143

[10]

Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4805-4821. doi: 10.3934/dcds.2021058

[11]

Andrzej Szulkin, Shoyeb Waliullah. Infinitely many solutions for some singular elliptic problems. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 321-333. doi: 10.3934/dcds.2013.33.321

[12]

Chunhua Wang, Jing Yang. Infinitely many solutions for an elliptic problem with double critical Hardy-Sobolev-Maz'ya terms. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1603-1628. doi: 10.3934/dcds.2016.36.1603

[13]

Nicola Abatangelo, Sven Jarohs, Alberto Saldaña. Positive powers of the Laplacian: From hypersingular integrals to boundary value problems. Communications on Pure and Applied Analysis, 2018, 17 (3) : 899-922. doi: 10.3934/cpaa.2018045

[14]

G. Infante. Positive solutions of nonlocal boundary value problems with singularities. Conference Publications, 2009, 2009 (Special) : 377-384. doi: 10.3934/proc.2009.2009.377

[15]

John R. Graef, Lingju Kong, Qingkai Kong, Min Wang. Positive solutions of nonlocal fractional boundary value problems. Conference Publications, 2013, 2013 (special) : 283-290. doi: 10.3934/proc.2013.2013.283

[16]

John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 83-90. doi: 10.3934/proc.2003.2003.83

[17]

Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1765-1783. doi: 10.3934/cpaa.2018084

[18]

Shaodong Wang. Infinitely many blowing-up solutions for Yamabe-type problems on manifolds with boundary. Communications on Pure and Applied Analysis, 2018, 17 (1) : 209-230. doi: 10.3934/cpaa.2018013

[19]

Xiying Sun, Qihuai Liu, Dingbian Qian, Na Zhao. Infinitely many subharmonic solutions for nonlinear equations with singular $ \phi $-Laplacian. Communications on Pure and Applied Analysis, 2020, 19 (1) : 279-292. doi: 10.3934/cpaa.20200015

[20]

Yinbin Deng, Shuangjie Peng, Li Wang. Infinitely many radial solutions to elliptic systems involving critical exponents. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 461-475. doi: 10.3934/dcds.2014.34.461

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (239)
  • HTML views (558)
  • Cited by (0)

Other articles
by authors

[Back to Top]