- Previous Article
- DCDS-S Home
- This Issue
-
Next Article
The hypoelliptic Robin problem for quasilinear elliptic equations
Errata to "Modeling and optimal control of HIV/AIDS prevention through PrEP", Discrete Contin. Dyn. Syst. Ser. S 11 (2018), no. 1,119–141
Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810–193 Aveiro, Portugal |
References:
[1] |
J. P. LaSalle, The Stability of Dynamical Systems, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1976. |
[2] |
C. J. Torres and D. F. M. Torres,
Modeling and optimal control of HIV/AIDS prevention through PrEP, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 119-141.
doi: 10.3934/dcdss.2018008. |
show all references
References:
[1] |
J. P. LaSalle, The Stability of Dynamical Systems, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1976. |
[2] |
C. J. Torres and D. F. M. Torres,
Modeling and optimal control of HIV/AIDS prevention through PrEP, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 119-141.
doi: 10.3934/dcdss.2018008. |
[1] |
Cristiana J. Silva. Stability and optimal control of a delayed HIV/AIDS-PrEP model. Discrete and Continuous Dynamical Systems - S, 2022, 15 (3) : 639-654. doi: 10.3934/dcdss.2021156 |
[2] |
Cristiana J. Silva, Delfim F. M. Torres. Modeling and optimal control of HIV/AIDS prevention through PrEP. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 119-141. doi: 10.3934/dcdss.2018008 |
[3] |
Cristiana J. Silva, Delfim F. M. Torres. A TB-HIV/AIDS coinfection model and optimal control treatment. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4639-4663. doi: 10.3934/dcds.2015.35.4639 |
[4] |
Miaomiao Gao, Daqing Jiang, Tasawar Hayat, Ahmed Alsaedi, Bashir Ahmad. Dynamics of a stochastic HIV/AIDS model with treatment under regime switching. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3177-3211. doi: 10.3934/dcdsb.2021181 |
[5] |
Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971 |
[6] |
Yu Yang, Yueping Dong, Yasuhiro Takeuchi. Global dynamics of a latent HIV infection model with general incidence function and multiple delays. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 783-800. doi: 10.3934/dcdsb.2018207 |
[7] |
Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217 |
[8] |
Chengxia Lei, Xinhui Zhou. Concentration phenomenon of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with spontaneous infection. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3077-3100. doi: 10.3934/dcdsb.2021174 |
[9] |
Gigi Thomas, Edward M. Lungu. A two-sex model for the influence of heavy alcohol consumption on the spread of HIV/AIDS. Mathematical Biosciences & Engineering, 2010, 7 (4) : 871-904. doi: 10.3934/mbe.2010.7.871 |
[10] |
Hongyong Zhao, Peng Wu, Shigui Ruan. Dynamic analysis and optimal control of a three-age-class HIV/AIDS epidemic model in China. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3491-3521. doi: 10.3934/dcdsb.2020070 |
[11] |
Praveen Kumar Gupta, Ajoy Dutta. Numerical solution with analysis of HIV/AIDS dynamics model with effect of fusion and cure rate. Numerical Algebra, Control and Optimization, 2019, 9 (4) : 393-399. doi: 10.3934/naco.2019038 |
[12] |
Jinliang Wang, Lijuan Guan. Global stability for a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 297-302. doi: 10.3934/dcdsb.2012.17.297 |
[13] |
Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525 |
[14] |
Shengqiang Liu, Lin Wang. Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences & Engineering, 2010, 7 (3) : 675-685. doi: 10.3934/mbe.2010.7.675 |
[15] |
A. M. Elaiw, N. H. AlShamrani. Global stability of HIV/HTLV co-infection model with CTL-mediated immunity. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1725-1764. doi: 10.3934/dcdsb.2021108 |
[16] |
Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101 |
[17] |
Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57 |
[18] |
Weiyi Zhang, Ling Zhou. Global asymptotic stability of constant equilibrium in a nonlocal diffusion competition model with free boundaries. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022062 |
[19] |
Karam Allali, Sanaa Harroudi, Delfim F. M. Torres. Optimal control of an HIV model with a trilinear antibody growth function. Discrete and Continuous Dynamical Systems - S, 2022, 15 (3) : 501-518. doi: 10.3934/dcdss.2021148 |
[20] |
Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]