[1]
|
P. Antonik, M. Gulina, J. Pauwels and S. Massar, Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronization and cryptography, Phys. Rev. E, 98 (2018).
doi: 10.1103/PhysRevE.98.012215.
|
[2]
|
P. C. Di Leoni, A. Mazzino and L. Biferale, Inferring flow parameters and turbulent configuration with physics-informed data assimilation and spectral nudging, Phys. Rev. Fluids, 3 (2018).
doi: 10.1103/PhysRevFluids.3.104604.
|
[3]
|
D. Ibáñez-Soria, J. Garcia-Ojalvo, A. Soria-Frisch and G. Ruffini, Detection of generalized synchronization using echo state networks, Chaos, 28 (2018), 7pp.
doi: 10.1063/1.5010285.
|
[4]
|
M. Inubushi and K. Yoshimura, Reservoir computing beyond memory-nonlinearity trade-off, Scientific Reports, 7 (2017).
doi: 10.1038/s41598-017-10257-6.
|
[5]
|
T. Ishihara and Y. Kaneda, High resolution DNS of incompressible homogeneous forced turbulence-time dependence of the statistics, in Statistical Theories and Computational Approaches to Turbulence, Springer, Tokyo, 2003,177–188.
doi: 10.1007/978-4-431-67002-5_11.
|
[6]
|
K. Ishioka, ispack-0.4.1, 1999. Available from: http://www.gfd-dennou.org/arch/ispack/.
|
[7]
|
H. Jaeger, The "echo state" approach to analysing and training recurrent neural networks, GMD Report, 148 (2001).
|
[8]
|
H. Jaeger and H. Haas, Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication, Science, 304 (2004), 78-80.
doi: 10.1126/science.1091277.
|
[9]
|
Z. Lu, B. R. Hunt and E. Ott, Attractor reconstruction by machine learning, Chaos, 28 (2018), 9pp.
doi: 10.1063/1.5039508.
|
[10]
|
Z. Lu, J. Pathak, B. Hunt, M. Girvan, R. Brockett and E. Ott, Reservoir observers: Model-free inference of unmeasured variables in chaotic systems, Chaos, 27 (2017).
doi: 10.1063/1.4979665.
|
[11]
|
M. Lukosevivcius and H. Jaeger, Reservoir computing approaches to recurrent neural network training, Comput. Science Rev., 3 (2009), 127-149.
doi: 10.1016/j.cosrev.2009.03.005.
|
[12]
|
W. Maass, T. Natschläger and H. Markram, Real-time computing without stable states: A new framework for neural computation based on perturbations, Neural Comput., 14 (2002), 2531-2560.
doi: 10.1162/089976602760407955.
|
[13]
|
K. Nakai and Y. Saiki, Machine-learning inference of fluid variables from data using reservoir computing, Phys. Rev. E, 98 (2018).
doi: 10.1103/PhysRevE.98.023111.
|
[14]
|
J. Pathak, B. Hunt, M. Girvan, Z. Lu and E. Ott, Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach, Phys. Rev. Lett., 120 (2018).
doi: 10.1103/PhysRevLett.120.024102.
|
[15]
|
J. Pathak, Z. Lu, B. Hunt, M. Girvan and E. Ott, Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data, Chaos, 27 (2017), 9pp.
doi: 10.1063/1.5010300.
|
[16]
|
T. Sauer, J. A. Yorke and M. Casdagli, Embedology, J. Statist. Phys., 65 (1991), 579-616.
doi: 10.1007/BF01053745.
|
[17]
|
F. Takens, Detecting strange attractors in turbulence, in Dynamical Systems and Turbulence, Lecture Notes in Math., 898, Springer, Berlin-New York, 1981,366–381.
doi: 10.1007/BFb0091924.
|
[18]
|
A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, D.C.: John Wiley & Sons, New York-Toronto, Ont.-London, 1977.
|
[19]
|
D. Verstraeten, B. Schrauwen, M. D'Haene and and D. A. Stroobandt, An experimental unification of reservoir computing methods, Neural Network, 20 (2007), 391-403.
doi: 10.1016/j.neunet.2007.04.003.
|