
-
Previous Article
Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties
- DCDS-S Home
- This Issue
-
Next Article
Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions
A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions
1. | Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Congo Brazzaville |
2. | Laboratoire de Mathématiques et Applications, Université de Poitiers, CNRS, F-86073 Poitiers, France |
We propose a time semi-discrete scheme for the Caginalp phase-field system with singular potentials and dynamic boundary conditions. The scheme is based on a time splitting which decouples the equations and on a convex splitting of the energy associated to the problem. The scheme is unconditionally uniquely solvable and the energy is nonincreasing if the time step is small enough. The discrete solution is shown to converge to the energy solution of the problem as the time step tends to $ 0 $. The proof involves a multivalued operator and a monotonicity argument. This approach allows us to compute numerically singular solutions to the problem.
References:
[1] |
P. F. Antonietti, M. Grasselli, S. Stangalino and M. Verani,
Discontinuous Galerkin approximation of linear parabolic problems with dynamic boundary conditions, J. Sci. Comput., 66 (2016), 1260-1280.
doi: 10.1007/s10915-015-0063-y. |
[2] |
H. Attouch, Variational Convergence for Functions and Operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. |
[3] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976. |
[4] |
S. Bartels and R. Müller,
Error control for the approximation of Allen-Cahn and Cahn-Hilliard equations with a logarithmic potential, Numer. Math., 119 (2011), 409-435.
doi: 10.1007/s00211-011-0389-9. |
[5] |
N. Batangouna and M. Pierre,
Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system, Commun. Pure Appl. Anal., 17 (2018), 1-19.
doi: 10.3934/cpaa.2018001. |
[6] |
F. Boyer and F. Nabet,
A DDFV method for a Cahn-Hilliard/Stokes phase field model with dynamic boundary conditions, ESAIM Math. Model. Numer. Anal., 51 (2017), 1691-1731.
doi: 10.1051/m2an/2016073. |
[7] |
H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. |
[8] |
H. Brezis, Analyse Fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983. |
[9] |
G. Caginalp,
An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245.
doi: 10.1007/BF00254827. |
[10] |
W. Chen, C. Wang, X. Wang and S. M. Wise, Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential, J. Comput. Phys. X, 3 (2019).
doi: 10.1016/j.jcpx.2019.100031. |
[11] |
L. Cherfils, H. Fakih and A. Miranville,
Finite-dimensional attractors for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation in image inpainting, Inverse Probl. Imaging, 9 (2015), 105-125.
doi: 10.3934/ipi.2015.9.105. |
[12] |
L. Cherfils, H. Fakih and A. Miranville,
On the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation with logarithmic nonlinear terms, SIAM J. Imaging Sci., 8 (2015), 1123-1140.
doi: 10.1137/140985627. |
[13] |
L. Cherfils, S. Gatti and A. Miranville,
Corrigendum to: "Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potentials", J. Math. Anal. Appl., 348 (2008), 1029-1030.
doi: 10.1016/j.jmaa.2008.07.058. |
[14] |
L. Cherfils, S. Gatti and A. Miranville, Finite dimensional attractors for the Caginalp system with singular potentials and dynamic boundary conditions, Bull. Transilv. Univ. Braşov Ser. III, 2 (2009), 25–34. |
[15] |
L. Cherfils, S. Gatti and A. Miranville,
Long time behavior of the Caginalp system with singular potentials and dynamic boundary conditions, Commun. Pure Appl. Anal., 11 (2012), 2261-2290.
doi: 10.3934/cpaa.2012.11.2261. |
[16] |
L. Cherfils and A. Miranville,
Some results on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl., 17 (2007), 107-129.
|
[17] |
L. Cherfils and A. Miranville,
On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., 54 (2009), 89-115.
doi: 10.1007/s10492-009-0008-6. |
[18] |
L. Cherfils, A. Miranville and S. Zelik,
The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561-596.
doi: 10.1007/s00032-011-0165-4. |
[19] |
L. Cherfils and M. Petcu,
A numerical analysis of the Cahn-Hilliard equation with non-permeable walls, Numer. Math., 128 (2014), 517-549.
doi: 10.1007/s00211-014-0618-0. |
[20] |
L. Cherfils, M. Petcu and M. Pierre,
A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst., 27 (2010), 1511-1533.
doi: 10.3934/dcds.2010.27.1511. |
[21] |
M. I. M. Copetti and C. M. Elliott,
Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numer. Math., 63 (1992), 39-65.
doi: 10.1007/BF01385847. |
[22] |
I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics in Applied Mathematics, 28, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.
doi: 10.1137/1.9781611971088. |
[23] |
H. P. Fischer, P. Maass and W. Dieterich,
Novel surface modes in spinodal decomposition, Phys. Rev. Lett., 79 (1997), 893-896.
doi: 10.1103/PhysRevLett.79.893. |
[24] |
H. P. Fischer, P. Maass and W. Dieterich, Diverging time and length scales of spinodal decomposition modes in thin flows, Europhys. Lett., 42 (1998), 49-54. Google Scholar |
[25] |
H. P. Fischer, J. Reinhard, W. Dieterich, J.-F. Gouyet, P. Maass, A. Majhofer and D. Reinel,
Time-dependent density functional theory and the kinetics of lattice gas systems in contact with a wall, J. Chem. Phys., 108 (1998), 3028-3037.
doi: 10.1063/1.475690. |
[26] |
T. Fukao, S. Yoshikawa and S. Wada,
Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case, Commun. Pure Appl. Anal., 16 (2017), 1915-1938.
doi: 10.3934/cpaa.2017093. |
[27] |
M. Grasselli, A. Miranville and G. Schimperna,
The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28 (2010), 67-98.
doi: 10.3934/dcds.2010.28.67. |
[28] |
M. Grasselli, H. Petzeltová and G. Schimperna,
Long time behavior of solutions to the Caginalp system with singular potential, Z. Anal. Anwend., 25 (2006), 51-72.
doi: 10.4171/ZAA/1277. |
[29] |
F. Hecht,
New development in freefem++, J. Numer. Math., 20 (2012), 251-265.
doi: 10.1515/jnum-2012-0013. |
[30] |
H. Israel, A. Miranville and M. Petcu,
Numerical analysis of a Cahn-Hilliard type equation with dynamic boundary conditions, Ric. Mat., 64 (2015), 25-50.
doi: 10.1007/s11587-014-0187-7. |
[31] |
B. Kovács and C. Lubich,
Numerical analysis of parabolic problems with dynamic boundary conditions, IMA J. Numer. Anal., 37 (2017), 1-39.
doi: 10.1093/imanum/drw015. |
[32] |
J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires, Dunod; Gauthier-Villars, Paris, 1969. |
[33] |
A. Miranville,
The Cahn-Hilliard equation and some of its variants, AIMS Mathematics, 2 (2017), 479-544.
doi: 10.3934/Math.2017.2.479. |
[34] |
A. Miranville and S. Zelik,
The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 275-310.
doi: 10.3934/dcds.2010.28.275. |
[35] |
D. Mugnolo and S. Romanelli,
Dirichlet forms for general Wentzell boundary conditions, analytic semigroups, and cosine operator functions, Electron. J. Differential Equations, 2006 (2006), 1-20.
|
[36] |
F. Nabet,
Convergence of a finite-volume scheme for the Cahn-Hilliard equation with dynamic boundary conditions, IMA J. Numer. Anal., 36 (2016), 1898-1942.
doi: 10.1093/imanum/drv057. |
[37] |
M. Pierre and M. Pierre,
Global existence via a multivalued operator for an Allen-Cahn-Gurtin equation, Discrete Contin. Dyn. Syst., 33 (2013), 5347-5377.
doi: 10.3934/dcds.2013.33.5347. |
[38] |
J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987),
65–96.
doi: 10.1007/BF01762360. |
[39] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam, 1984.
doi: 10.1090/chel/343. |
show all references
References:
[1] |
P. F. Antonietti, M. Grasselli, S. Stangalino and M. Verani,
Discontinuous Galerkin approximation of linear parabolic problems with dynamic boundary conditions, J. Sci. Comput., 66 (2016), 1260-1280.
doi: 10.1007/s10915-015-0063-y. |
[2] |
H. Attouch, Variational Convergence for Functions and Operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. |
[3] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976. |
[4] |
S. Bartels and R. Müller,
Error control for the approximation of Allen-Cahn and Cahn-Hilliard equations with a logarithmic potential, Numer. Math., 119 (2011), 409-435.
doi: 10.1007/s00211-011-0389-9. |
[5] |
N. Batangouna and M. Pierre,
Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system, Commun. Pure Appl. Anal., 17 (2018), 1-19.
doi: 10.3934/cpaa.2018001. |
[6] |
F. Boyer and F. Nabet,
A DDFV method for a Cahn-Hilliard/Stokes phase field model with dynamic boundary conditions, ESAIM Math. Model. Numer. Anal., 51 (2017), 1691-1731.
doi: 10.1051/m2an/2016073. |
[7] |
H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. |
[8] |
H. Brezis, Analyse Fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983. |
[9] |
G. Caginalp,
An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245.
doi: 10.1007/BF00254827. |
[10] |
W. Chen, C. Wang, X. Wang and S. M. Wise, Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential, J. Comput. Phys. X, 3 (2019).
doi: 10.1016/j.jcpx.2019.100031. |
[11] |
L. Cherfils, H. Fakih and A. Miranville,
Finite-dimensional attractors for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation in image inpainting, Inverse Probl. Imaging, 9 (2015), 105-125.
doi: 10.3934/ipi.2015.9.105. |
[12] |
L. Cherfils, H. Fakih and A. Miranville,
On the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation with logarithmic nonlinear terms, SIAM J. Imaging Sci., 8 (2015), 1123-1140.
doi: 10.1137/140985627. |
[13] |
L. Cherfils, S. Gatti and A. Miranville,
Corrigendum to: "Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potentials", J. Math. Anal. Appl., 348 (2008), 1029-1030.
doi: 10.1016/j.jmaa.2008.07.058. |
[14] |
L. Cherfils, S. Gatti and A. Miranville, Finite dimensional attractors for the Caginalp system with singular potentials and dynamic boundary conditions, Bull. Transilv. Univ. Braşov Ser. III, 2 (2009), 25–34. |
[15] |
L. Cherfils, S. Gatti and A. Miranville,
Long time behavior of the Caginalp system with singular potentials and dynamic boundary conditions, Commun. Pure Appl. Anal., 11 (2012), 2261-2290.
doi: 10.3934/cpaa.2012.11.2261. |
[16] |
L. Cherfils and A. Miranville,
Some results on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl., 17 (2007), 107-129.
|
[17] |
L. Cherfils and A. Miranville,
On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., 54 (2009), 89-115.
doi: 10.1007/s10492-009-0008-6. |
[18] |
L. Cherfils, A. Miranville and S. Zelik,
The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561-596.
doi: 10.1007/s00032-011-0165-4. |
[19] |
L. Cherfils and M. Petcu,
A numerical analysis of the Cahn-Hilliard equation with non-permeable walls, Numer. Math., 128 (2014), 517-549.
doi: 10.1007/s00211-014-0618-0. |
[20] |
L. Cherfils, M. Petcu and M. Pierre,
A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst., 27 (2010), 1511-1533.
doi: 10.3934/dcds.2010.27.1511. |
[21] |
M. I. M. Copetti and C. M. Elliott,
Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numer. Math., 63 (1992), 39-65.
doi: 10.1007/BF01385847. |
[22] |
I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics in Applied Mathematics, 28, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.
doi: 10.1137/1.9781611971088. |
[23] |
H. P. Fischer, P. Maass and W. Dieterich,
Novel surface modes in spinodal decomposition, Phys. Rev. Lett., 79 (1997), 893-896.
doi: 10.1103/PhysRevLett.79.893. |
[24] |
H. P. Fischer, P. Maass and W. Dieterich, Diverging time and length scales of spinodal decomposition modes in thin flows, Europhys. Lett., 42 (1998), 49-54. Google Scholar |
[25] |
H. P. Fischer, J. Reinhard, W. Dieterich, J.-F. Gouyet, P. Maass, A. Majhofer and D. Reinel,
Time-dependent density functional theory and the kinetics of lattice gas systems in contact with a wall, J. Chem. Phys., 108 (1998), 3028-3037.
doi: 10.1063/1.475690. |
[26] |
T. Fukao, S. Yoshikawa and S. Wada,
Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case, Commun. Pure Appl. Anal., 16 (2017), 1915-1938.
doi: 10.3934/cpaa.2017093. |
[27] |
M. Grasselli, A. Miranville and G. Schimperna,
The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28 (2010), 67-98.
doi: 10.3934/dcds.2010.28.67. |
[28] |
M. Grasselli, H. Petzeltová and G. Schimperna,
Long time behavior of solutions to the Caginalp system with singular potential, Z. Anal. Anwend., 25 (2006), 51-72.
doi: 10.4171/ZAA/1277. |
[29] |
F. Hecht,
New development in freefem++, J. Numer. Math., 20 (2012), 251-265.
doi: 10.1515/jnum-2012-0013. |
[30] |
H. Israel, A. Miranville and M. Petcu,
Numerical analysis of a Cahn-Hilliard type equation with dynamic boundary conditions, Ric. Mat., 64 (2015), 25-50.
doi: 10.1007/s11587-014-0187-7. |
[31] |
B. Kovács and C. Lubich,
Numerical analysis of parabolic problems with dynamic boundary conditions, IMA J. Numer. Anal., 37 (2017), 1-39.
doi: 10.1093/imanum/drw015. |
[32] |
J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires, Dunod; Gauthier-Villars, Paris, 1969. |
[33] |
A. Miranville,
The Cahn-Hilliard equation and some of its variants, AIMS Mathematics, 2 (2017), 479-544.
doi: 10.3934/Math.2017.2.479. |
[34] |
A. Miranville and S. Zelik,
The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 275-310.
doi: 10.3934/dcds.2010.28.275. |
[35] |
D. Mugnolo and S. Romanelli,
Dirichlet forms for general Wentzell boundary conditions, analytic semigroups, and cosine operator functions, Electron. J. Differential Equations, 2006 (2006), 1-20.
|
[36] |
F. Nabet,
Convergence of a finite-volume scheme for the Cahn-Hilliard equation with dynamic boundary conditions, IMA J. Numer. Anal., 36 (2016), 1898-1942.
doi: 10.1093/imanum/drv057. |
[37] |
M. Pierre and M. Pierre,
Global existence via a multivalued operator for an Allen-Cahn-Gurtin equation, Discrete Contin. Dyn. Syst., 33 (2013), 5347-5377.
doi: 10.3934/dcds.2013.33.5347. |
[38] |
J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987),
65–96.
doi: 10.1007/BF01762360. |
[39] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam, 1984.
doi: 10.1090/chel/343. |


0 | 1 | 2 | 3 | 4 | 5 | |
0.0240 | 0.0124 | 0.0063 | 0.0032 | 0.0016 | 0.0008 | |
ratio | 1.94 | 1.97 | 1.97 | 2 | 2 | — |
0 | 1 | 2 | 3 | 4 | 5 | |
0.0240 | 0.0124 | 0.0063 | 0.0032 | 0.0016 | 0.0008 | |
ratio | 1.94 | 1.97 | 1.97 | 2 | 2 | — |
0 | 1 | 2 | 3 | 4 | 5 | |
LI scheme | 1 | 2 | 4 | 8 | 16 | 32 |
DS scheme | 165 | 262 | 305 | 381 | 511 | 489 |
0 | 1 | 2 | 3 | 4 | 5 | |
LI scheme | 1 | 2 | 4 | 8 | 16 | 32 |
DS scheme | 165 | 262 | 305 | 381 | 511 | 489 |
[1] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[2] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[3] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[4] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[5] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[6] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[7] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[8] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[9] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[10] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[11] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[12] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[13] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[14] |
V. Kumar Murty, Ying Zong. Splitting of abelian varieties. Advances in Mathematics of Communications, 2014, 8 (4) : 511-519. doi: 10.3934/amc.2014.8.511 |
[15] |
Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104 |
[16] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[17] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
[18] |
Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067 |
[19] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[20] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]