February  2021, 14(2): 723-743. doi: 10.3934/dcdss.2020354

Theoretical and numerical analysis of a class of quasilinear elliptic equations

1. 

Université de Lorraine, CNRS, IECL, F 54000 Nancy, France

2. 

Laboratory LAMAI, Faculty of Science and Technology, University Cadi Ayyad, B.P. 549, Street Abdelkarim Elkhattabi, Marrakech - 40000, Morocco

3. 

LAMMDA, Université de Sousse, ESST Hammam Sousse, Rue Lamine El Abbessi, Hammam Sousse, 4011, Tunisia

* Corresponding author: Nahed Naceur

Received  October 2019 Revised  December 2019 Published  May 2020

The purpose of this paper is to give a result of the existence of a non-negative weak solution of a quasilinear elliptic equation in the N-dimensional case, $ N\geq 1 $, and to present a novel numerical method to compute it. In this work, we assume that the nonlinearity concerning the derivatives of the solution are sub-quadratics. The numerical algorithm designed to compute an approximation of the non-negative weak solution of the considered equation has coupled the Newton method with domain decomposition and Yosida approximation of the nonlinearity. The domain decomposition is adapted to the nonlinearity at each step of the Newton method. Numerical examples are presented and commented on.

Citation: Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354
References:
[1]

S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Mathematical Studies, D. Van Nostrand Co., Inc., Princeton, 1965.  Google Scholar

[2]

N. Alaa, Etude d'Équations Elliptiques Non-Linéaires à Dépendance Convexe en le Gradient et à Données Mesures, Ph.D thesis, Université de Nancy I, 1989. Google Scholar

[3]

N. Alaa, A. Cheggour and J. R. Roche, Mathematical and numerical analysis of a class of non-linear elliptic equations in the two dimensional case, Numerical Mathematics and Advanced Applications, Springer, Berlin, 2006,926–934. doi: 10.1007/978-3-540-34288-5_92.  Google Scholar

[4]

N. AlaaF. Maach and I. Mounir, Existence for some quasilinear elliptic systems with critical growth nonlinearity and $L^{1}$ data, J. Appl. Anal., 11 (2005), 81-94.  doi: 10.1515/JAA.2005.81.  Google Scholar

[5]

N. Alaa and I. Mounir, Global existence for reaction-diffusion systems with mass control and critical growth with respect to the gradient, J. Math. Anal. Appl., 253 (2001), 532-557.  doi: 10.1006/jmaa.2000.7163.  Google Scholar

[6]

N. Alaa and M. Iguernane, Weak periodic solutions of some quasilinear parabolic equations with data measures, JIPAM. J. Inequal. Pure Appl. Math., 3 (2002), 14pp.  Google Scholar

[7]

N. Alaa, Solutions faibles d'équations paraboliques quasi-linéaires avec données initiales mesures, Ann. Math. Blaise Pascal, 3 (1996), 1-15.  doi: 10.5802/ambp.64.  Google Scholar

[8]

N. Alaa and M. Pierre, Weak solution of some quasilinear elliptic equations with data measures, SIAM J. Math. Anal., 24 (1993), 23-35.  doi: 10.1137/0524002.  Google Scholar

[9]

N. Alaa and J. R. Roche, Theoretical and numerical analysis of a class of nonlinear elliptic equations, Mediterr. J. Math, 2 (2005), 327-344.  doi: 10.1007/s00009-005-0048-4.  Google Scholar

[10]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in order Banach spaces, SIAM Rev., 18 (1976), 620-709.  doi: 10.1137/1018114.  Google Scholar

[11]

H. Amann and M. G. Crandall, On some existence theorems for semilinear elliptic equations, Indiana Univ. Math. J., 27 (1978), 779-790.  doi: 10.1512/iumj.1978.27.27050.  Google Scholar

[12]

P. Baras and M. Pierre, Critères d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 185-212.  doi: 10.1016/S0294-1449(16)30402-4.  Google Scholar

[13]

A. BensoussanL. Boccardo and F. Murat, On a nonlinear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 5 (1988), 347-364.  doi: 10.1016/S0294-1449(16)30342-0.  Google Scholar

[14]

L. BoccardoF. Murat and J. P. Puel, Existence results for some quasilinear parabolic equations, Nonlinear Anal., 13 (1989), 373-392.  doi: 10.1016/0362-546X(89)90045-X.  Google Scholar

[15]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 15, Springer-Verlag, New York, 1994. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[16]

H. Brezis and W. Strauss, Semilinear second-order elliptic equations in $L^{1}$, J. Math. Soc. Japan, 25 (1973), 565-590.  doi: 10.2969/jmsj/02540565.  Google Scholar

[17]

X. C. Cai and O. B. Widlund, Multiplicative Schwarz algorithms for some nonsymmetric and indefinite problems, SIAM J. Numer. Anal., 30 (1993), 936-952.  doi: 10.1137/0730049.  Google Scholar

[18]

X. C. Cai and O. B. Widlund, Domain decomposition algorithms for indefinite elliptic problems, SIAM J. Sci. Statist. Comput., 13 (1992), 243-258.  doi: 10.1137/0913013.  Google Scholar

[19]

X. C. Cai, An optimal two-level overlapping domain decomposition method for elliptic problems in two and three dimensions, SIAM J. Sci. Comput., 14 (1993), 239-247.  doi: 10.1137/0914014.  Google Scholar

[20]

Y. Choquet-Bruhat and J. Leray, Sur le problème de Dirichlet, quasilineaire, d'ordre $2$, C. R. Acad. Sci. Paris, Sér. A-B, 274 (1972), A81–A85.  Google Scholar

[21]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, 4, North-Holland Publishing Co., Amsterdam-New-York-Oxford, 1978.  Google Scholar

[22]

P. Deuflhard, Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms, Springer Series in Computational Mathematics, 35, Springer-Verlag, Berlin, 2004.  Google Scholar

[23]

M. DryjaB. F. Smith and O. B. Widlund, Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions, SIAM J. Numer. Anal., 31 (1994), 1662-1694.  doi: 10.1137/0731086.  Google Scholar

[24]

M. Dryja and O. B. Widlund, Domain decomposition algorithms with small overlap. Iterative methods in numerical linear algebra, SIAM J. Sci. Comput., 15 (1994), 604-620.  doi: 10.1137/0915040.  Google Scholar

[25]

J. A. Ezquerro and M. A. Hernandez, On an application of Newton's method to nonlinear operators with $w$-conditioned second derivative, BIT, 42 (2002), 519-530.  doi: 10.1023/A:1021977126075.  Google Scholar

[26]

J. A. Ezquerro and M. A. Hernandez, On the $R$-order of convergence of Newton's method under mild differentiability conditions, J. Comput. Appl. Math., 197 (2006), 53-61.  doi: 10.1016/j.cam.2005.10.023.  Google Scholar

[27]

M. Gander, A waveform relaxation with overlapping splitting for reaction diffusion equations, Numer. Linear Algebra Appl., 6 (1999), 125-145.  doi: 10.1002/(SICI)1099-1506(199903)6:2<125::AID-NLA152>3.0.CO;2-4.  Google Scholar

[28]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, 224, Springer-Verlag, Berlin, 2001. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[29]

M. A. Hernandez, The Newton method for operators with Hölder continous first derivative, J. Optim. Theory Appl., 109 (2001), 631-648.  doi: 10.1023/A:1017571906739.  Google Scholar

[30]

C. T. Kelly, Iterative Methods for Linear and Nonlinear Equations, Frontiers in Applied Mathematics, 16, SIAM, Philadelphia, PA, 1995. doi: 10.1137/1.9781611970944.  Google Scholar

[31]

S. A. Levin, Models in ecotoxicology: Methodological aspects, in Applied Mathematical Ecology, Biomathematics, 18, Springer, Berlin, 1989,315–321. doi: 10.1007/978-3-642-61317-3_13.  Google Scholar

[32]

P. L. Lions, Résolution de problèmes elliptiques quasilinéaires, Arch. Rational Mech. Anal., 74 (1980), 335-353.  doi: 10.1007/BF00249679.  Google Scholar

[33]

P. L. Lions, On the Schwarz alternating method. Ⅰ, in First International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1988, 1–42.  Google Scholar

[34]

J. D. Murray, Mathematical Biology, Biomathematics, 19, Springer-Verlag, Berlin, 1993. doi: 10.1007/b98869.  Google Scholar

[35]

A. Porretta, Existence for elliptic equations in $L^{1}$ having lower order terms with natural growth, Portugal. Math., 57 (2000), 179-190.   Google Scholar

[36]

A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, 23, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-540-85268-1.  Google Scholar

[37] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1999.   Google Scholar
[38]

J. T. Schwartz, Nonlinear Functional Analysis, Mathematics and its Applications, Gordon and Breach Science Publishers, New York-London-Paris, 1969.  Google Scholar

[39] B. F. SmithP. E. Bjorstad and W. D. Gropp, Domain Decomposition. Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, Cambridge, 1996.   Google Scholar

show all references

References:
[1]

S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Mathematical Studies, D. Van Nostrand Co., Inc., Princeton, 1965.  Google Scholar

[2]

N. Alaa, Etude d'Équations Elliptiques Non-Linéaires à Dépendance Convexe en le Gradient et à Données Mesures, Ph.D thesis, Université de Nancy I, 1989. Google Scholar

[3]

N. Alaa, A. Cheggour and J. R. Roche, Mathematical and numerical analysis of a class of non-linear elliptic equations in the two dimensional case, Numerical Mathematics and Advanced Applications, Springer, Berlin, 2006,926–934. doi: 10.1007/978-3-540-34288-5_92.  Google Scholar

[4]

N. AlaaF. Maach and I. Mounir, Existence for some quasilinear elliptic systems with critical growth nonlinearity and $L^{1}$ data, J. Appl. Anal., 11 (2005), 81-94.  doi: 10.1515/JAA.2005.81.  Google Scholar

[5]

N. Alaa and I. Mounir, Global existence for reaction-diffusion systems with mass control and critical growth with respect to the gradient, J. Math. Anal. Appl., 253 (2001), 532-557.  doi: 10.1006/jmaa.2000.7163.  Google Scholar

[6]

N. Alaa and M. Iguernane, Weak periodic solutions of some quasilinear parabolic equations with data measures, JIPAM. J. Inequal. Pure Appl. Math., 3 (2002), 14pp.  Google Scholar

[7]

N. Alaa, Solutions faibles d'équations paraboliques quasi-linéaires avec données initiales mesures, Ann. Math. Blaise Pascal, 3 (1996), 1-15.  doi: 10.5802/ambp.64.  Google Scholar

[8]

N. Alaa and M. Pierre, Weak solution of some quasilinear elliptic equations with data measures, SIAM J. Math. Anal., 24 (1993), 23-35.  doi: 10.1137/0524002.  Google Scholar

[9]

N. Alaa and J. R. Roche, Theoretical and numerical analysis of a class of nonlinear elliptic equations, Mediterr. J. Math, 2 (2005), 327-344.  doi: 10.1007/s00009-005-0048-4.  Google Scholar

[10]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in order Banach spaces, SIAM Rev., 18 (1976), 620-709.  doi: 10.1137/1018114.  Google Scholar

[11]

H. Amann and M. G. Crandall, On some existence theorems for semilinear elliptic equations, Indiana Univ. Math. J., 27 (1978), 779-790.  doi: 10.1512/iumj.1978.27.27050.  Google Scholar

[12]

P. Baras and M. Pierre, Critères d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 185-212.  doi: 10.1016/S0294-1449(16)30402-4.  Google Scholar

[13]

A. BensoussanL. Boccardo and F. Murat, On a nonlinear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 5 (1988), 347-364.  doi: 10.1016/S0294-1449(16)30342-0.  Google Scholar

[14]

L. BoccardoF. Murat and J. P. Puel, Existence results for some quasilinear parabolic equations, Nonlinear Anal., 13 (1989), 373-392.  doi: 10.1016/0362-546X(89)90045-X.  Google Scholar

[15]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 15, Springer-Verlag, New York, 1994. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[16]

H. Brezis and W. Strauss, Semilinear second-order elliptic equations in $L^{1}$, J. Math. Soc. Japan, 25 (1973), 565-590.  doi: 10.2969/jmsj/02540565.  Google Scholar

[17]

X. C. Cai and O. B. Widlund, Multiplicative Schwarz algorithms for some nonsymmetric and indefinite problems, SIAM J. Numer. Anal., 30 (1993), 936-952.  doi: 10.1137/0730049.  Google Scholar

[18]

X. C. Cai and O. B. Widlund, Domain decomposition algorithms for indefinite elliptic problems, SIAM J. Sci. Statist. Comput., 13 (1992), 243-258.  doi: 10.1137/0913013.  Google Scholar

[19]

X. C. Cai, An optimal two-level overlapping domain decomposition method for elliptic problems in two and three dimensions, SIAM J. Sci. Comput., 14 (1993), 239-247.  doi: 10.1137/0914014.  Google Scholar

[20]

Y. Choquet-Bruhat and J. Leray, Sur le problème de Dirichlet, quasilineaire, d'ordre $2$, C. R. Acad. Sci. Paris, Sér. A-B, 274 (1972), A81–A85.  Google Scholar

[21]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, 4, North-Holland Publishing Co., Amsterdam-New-York-Oxford, 1978.  Google Scholar

[22]

P. Deuflhard, Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms, Springer Series in Computational Mathematics, 35, Springer-Verlag, Berlin, 2004.  Google Scholar

[23]

M. DryjaB. F. Smith and O. B. Widlund, Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions, SIAM J. Numer. Anal., 31 (1994), 1662-1694.  doi: 10.1137/0731086.  Google Scholar

[24]

M. Dryja and O. B. Widlund, Domain decomposition algorithms with small overlap. Iterative methods in numerical linear algebra, SIAM J. Sci. Comput., 15 (1994), 604-620.  doi: 10.1137/0915040.  Google Scholar

[25]

J. A. Ezquerro and M. A. Hernandez, On an application of Newton's method to nonlinear operators with $w$-conditioned second derivative, BIT, 42 (2002), 519-530.  doi: 10.1023/A:1021977126075.  Google Scholar

[26]

J. A. Ezquerro and M. A. Hernandez, On the $R$-order of convergence of Newton's method under mild differentiability conditions, J. Comput. Appl. Math., 197 (2006), 53-61.  doi: 10.1016/j.cam.2005.10.023.  Google Scholar

[27]

M. Gander, A waveform relaxation with overlapping splitting for reaction diffusion equations, Numer. Linear Algebra Appl., 6 (1999), 125-145.  doi: 10.1002/(SICI)1099-1506(199903)6:2<125::AID-NLA152>3.0.CO;2-4.  Google Scholar

[28]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, 224, Springer-Verlag, Berlin, 2001. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[29]

M. A. Hernandez, The Newton method for operators with Hölder continous first derivative, J. Optim. Theory Appl., 109 (2001), 631-648.  doi: 10.1023/A:1017571906739.  Google Scholar

[30]

C. T. Kelly, Iterative Methods for Linear and Nonlinear Equations, Frontiers in Applied Mathematics, 16, SIAM, Philadelphia, PA, 1995. doi: 10.1137/1.9781611970944.  Google Scholar

[31]

S. A. Levin, Models in ecotoxicology: Methodological aspects, in Applied Mathematical Ecology, Biomathematics, 18, Springer, Berlin, 1989,315–321. doi: 10.1007/978-3-642-61317-3_13.  Google Scholar

[32]

P. L. Lions, Résolution de problèmes elliptiques quasilinéaires, Arch. Rational Mech. Anal., 74 (1980), 335-353.  doi: 10.1007/BF00249679.  Google Scholar

[33]

P. L. Lions, On the Schwarz alternating method. Ⅰ, in First International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1988, 1–42.  Google Scholar

[34]

J. D. Murray, Mathematical Biology, Biomathematics, 19, Springer-Verlag, Berlin, 1993. doi: 10.1007/b98869.  Google Scholar

[35]

A. Porretta, Existence for elliptic equations in $L^{1}$ having lower order terms with natural growth, Portugal. Math., 57 (2000), 179-190.   Google Scholar

[36]

A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, 23, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-540-85268-1.  Google Scholar

[37] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1999.   Google Scholar
[38]

J. T. Schwartz, Nonlinear Functional Analysis, Mathematics and its Applications, Gordon and Breach Science Publishers, New York-London-Paris, 1969.  Google Scholar

[39] B. F. SmithP. E. Bjorstad and W. D. Gropp, Domain Decomposition. Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, Cambridge, 1996.   Google Scholar
Figure 1.  The computed super-solution $ {{w}_h} $
Figure 2.  The numerical approximation of the solution of (30)
Figure 3.  Evolution of the error w.r.t. $ n $
Figure 4.  The numerical approximation of the super-solution of (31)
Figure 5.  The final sub-domains decomposition
Figure 6.  The computed solution at the 20th step of the algorithm implementing the Yosida's approximation of $ G $
Table 1.  The $L^2$-norm of error between $u$ and $u_{n, h}$
n 1 2 3 ... 8 9 10
Error $0.6$ $0.281$ 0.1033 ... $1.2 \; 10^{-4}$ $3.05\; 10^{-5}$ $8.21 \; 10^{-6}$
#Newton iteration 5 7 9 ... 7 6 6
n 1 2 3 ... 8 9 10
Error $0.6$ $0.281$ 0.1033 ... $1.2 \; 10^{-4}$ $3.05\; 10^{-5}$ $8.21 \; 10^{-6}$
#Newton iteration 5 7 9 ... 7 6 6
Table 2.  The behavior of the algorithm computing the super-solution
Newton iteration 1 2 3 4
Norm of the Newton update $ 4.21 $ $ 0.17 $ $ 0.026 $ $ 6.4\; 10^{-4} $
# Schwarz iteration - 20 14 6
Norm of the Schwarz update - $ 8.6\; 10^{-4} $ $ 9.1\; 10^{-4} $ $ 8.8\; 10^{-4} $
#sub-domains 1 9 16 16
Newton iteration 1 2 3 4
Norm of the Newton update $ 4.21 $ $ 0.17 $ $ 0.026 $ $ 6.4\; 10^{-4} $
# Schwarz iteration - 20 14 6
Norm of the Schwarz update - $ 8.6\; 10^{-4} $ $ 9.1\; 10^{-4} $ $ 8.8\; 10^{-4} $
#sub-domains 1 9 16 16
Table 3.  The behavior of the algorithm computing the solution of the problem (20)
n 1 2 ... 6 7 ... 19 20
Norm of the update 0.1009 0.1037 ... 0.0232 0.018 ... 0.0065 0.0062
# Newton iteration 7 8 ... 8 9 ... 9 8
n 1 2 ... 6 7 ... 19 20
Norm of the update 0.1009 0.1037 ... 0.0232 0.018 ... 0.0065 0.0062
# Newton iteration 7 8 ... 8 9 ... 9 8
[1]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[2]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[3]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[4]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[5]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[6]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[7]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[8]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[9]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[10]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[11]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[12]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[13]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[14]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[15]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[16]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[17]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[18]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[19]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[20]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (116)
  • HTML views (288)
  • Cited by (0)

[Back to Top]