• Previous Article
    Weighted pseudo almost periodicity of multi-proportional delayed shunting inhibitory cellular neural networks with D operator
  • DCDS-S Home
  • This Issue
  • Next Article
    A delayed nonlinear stochastic model for cocaine consumption: Stability analysis and simulation using real data
April  2021, 14(4): 1245-1258. doi: 10.3934/dcdss.2020359

Further stability analysis of neutral-type Cohen-Grossberg neural networks with multiple delays

Department of Mathematics, Faculty of Science, Istanbul University, Beyazit, Istanbul, Turkey

* Corresponding author: Ozlem Faydasicok

Received  November 2019 Revised  December 2019 Published  April 2021 Early access  May 2020

The key contribution of this paper is to study the stability analysis of neutral-type Cohen-Grossberg neural networks possessing multiple time delays in the states of the neurons and multiple neutral delays in time derivative of states of the neurons. By making the use of a proper Lyapunov functional, we propose a novel sufficient time-independent stability criterion for this model of neutral-type neural networks. The proposed stability criterion in this paper can be absolutely expressed in terms of the parameters of the neural network model considered as this newly proposed criterion only relies on the relationships established among the network parameters. A numerical example is also given to indicate the advantages of the obtained stability criterion over the previously published stability results for the same class of Cohen-Grossberg neural networks. Since obtaining stability conditions for neutral-type Cohen-Grossberg neural networks with multiple delays is a difficult task to achieve, there are only few papers in the literature dealing with this problem. Therefore, the results given in the current paper makes an important contribution to the stability problem for this class of neutral-type neural networks.

Citation: Ozlem Faydasicok. Further stability analysis of neutral-type Cohen-Grossberg neural networks with multiple delays. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1245-1258. doi: 10.3934/dcdss.2020359
References:
[1]

L. O. Chua and L. Yang, Cellular neural networks: Applications, IEEE Trans. Circuits and Systems, 35 (1988), 1273-1290.  doi: 10.1109/31.7601.

[2]

M. A. Cohen and S. Grossberg, Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE Trans. Systems Man Cybernet., 13 (1983), 815-826.  doi: 10.1109/TSMC.1983.6313075.

[3]

J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci. U.S.A., 79 (1982), 2554-2558.  doi: 10.1073/pnas.79.8.2554.

[4]

A. GuezV. Protopopsecu and J. Barhen, On the stability, and design of nonlinear continuous neural networks, IEEE Trans. Syst. Man Cybernetics, 18 (1998), 80-87. 

[5]

J. WangY. Cai and J. Yin, Multi-start stochastic competitive Hopfield neural network for frequency assignment problem in satellite communications, Expert Syst. Appl., 38 (2011), 131-145.  doi: 10.1016/j.eswa.2010.06.027.

[6]

S. C. TongY. M. Li and H. G. Zhang, Adaptive neural network decentralized backstepping output-feedback control for nonlinear large-scale systems with time delays, IEEE Trans. Neural Networks, 22 (2011), 1073-1086.  doi: 10.1109/TNN.2011.2146274.

[7]

M. GalickiH. WitteJ. DorschelM. Eiselt and G. Griessbach, Common optimization of adaptive preprocessing units and a neural network during the learning period. Application in EEG pattern recognition, Neural Networks, 10 (1997), 1153-1163.  doi: 10.1016/S0893-6080(97)00033-6.

[8]

Q. ZhuJ. Cao and R. Rakkiyappan, Exponential input-to-state stability of stochastic Cohen-Grossberg neural networks with mixed delays, Nonlinear Dynam., 79 (2015), 1085-1098.  doi: 10.1007/s11071-014-1725-2.

[9]

Q. Zhu and J. Cao, Robust exponential stability of Markovian jump impulsive stochastic Cohen-Grossberg neural networks with mixed time delays, IEEE Trans. Neural Netw., 21 (2010), 1314-1325.  doi: 10.1109/TNN.2010.2054108.

[10]

R. ManivannanR. SamiduraiJ. CaoA. Alsaedi and F. E. Alsaadi, Stability analysis of interval time-varying delayed neural networks including neutral time-delay and leakage delay, Chaos Solitons Fractals, 114 (2018), 433-445.  doi: 10.1016/j.chaos.2018.07.041.

[11]

Q. Zhu and J. Cao, Stability analysis of Markovian jump stochastic BAM neural networks with impulse control and mixed time delays, IEEE Trans. Neural Netw. Learn. Syst., 23 (2012), 467-479.  doi: 10.1109/TNNLS.2011.2182659.

[12]

Q. SongQ. YuZ. ZhaoY. Liu and F. E. Alsaadi, Boundedness and global robust stability analysis of delayed complex-valued neural networks with interval parameter uncertainties, Neural Networks, 103 (2018), 55-62.  doi: 10.1016/j.neunet.2018.03.008.

[13]

Q. Zhu and X. Li, Exponential and almost sure exponential stability of stochastic fuzzy delayed Cohen-Grossberg neural networks, Fuzzy Sets and Systems, 203 (2012), 74-94.  doi: 10.1016/j.fss.2012.01.005.

[14]

Q. Zhu, Stability analysis of stochastic delay differential equations with Lévy noise, Systems Control Lett., 118 (2018), 62-68.  doi: 10.1016/j.sysconle.2018.05.015.

[15]

W. Xie and Q. Zhu, Mean square exponential stability of stochastic fuzzy delayed Cohen-Grossberg neural networks with expectations in the coefficients, Neurocomputing, 166 (2015), 133-139.  doi: 10.1016/j.neucom.2015.04.020.

[16]

X. TanJ. Cao and X. Li, Leader-following mean square consensus of stochastic multi-agent systems with input delay via event-triggered control, IET Control Theory Appl., 12 (2018), 299-309.  doi: 10.1049/iet-cta.2017.0462.

[17]

Q. Zhu and J. Cao, Exponential stability analysis of stochastic reactiondiffusion Cohen-Grossberg neural networks with mixed delays, Neurocomputing, 74 (2011), 3084-3091.  doi: 10.1016/j.neucom.2011.04.030.

[18]

Q. Zhu and J. Cao, $p$th moment exponential synchronization for stochastic delayed Cohen-Grossberg neural networks with Markovian switching, Nonlinear Dynam., 67 (2012), 829-845.  doi: 10.1007/s11071-011-0029-z.

[19]

C. GeC. Hua and X. Guan, New delay-dependent stability criteria for neural networks with time-varying delay using delay-decomposition approach, IEEE Trans. Neural Netw. Learn. Syst., 25 (2014), 1378-1383.  doi: 10.1109/TNNLS.2013.2285564.

[20]

Z. Wang, L. Liu, Q. H. Shan and H. Zhang, Stability criteria for recurrent neural networks with time-varying delay based on secondary delay partitioning method, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 2589–2595, . doi: 10.1109/TNNLS.2014.2387434.

[21]

X. ZhangX. LiJ. Cao and F. Miaadi, Design of memory controllers for finite-time stabilization of delayed neural networks with uncertainty, J. Franklin Inst., 355 (2018), 5394-5413.  doi: 10.1016/j.jfranklin.2018.05.037.

[22]

I. StamovaT. Stamov and X. Li, Global exponential stability of a class of impulsive cellular neural networks with supremums, Internat. J. Adapt. Control Signal Process., 28 (2014), 1227-1239.  doi: 10.1002/acs.2440.

[23]

Q. ZhuR. Rakkiyappan and A. Chandrasekar, Stochastic stability of Markovian jump BAM neural networks with leakage delays and impulse control, Neurocomputing, 136 (2014), 136-151.  doi: 10.1016/j.neucom.2014.01.018.

[24]

H. ChenP. ShiC. C. Lim and P. Hu, Exponential stability for neutral stochastic Markov systems with time-varying delay and its applications, IEEE Trans. Cybernetics, 46 (2016), 1350-1362.  doi: 10.1109/TCYB.2015.2442274.

[25]

L. ChengZ. G. Hou and M. Tan, A neutral-type delayed projection neural network for solving nonlinear variational inequalities, IEEE Trans. Circuits Syst. II: Express Briefs, 55 (2008), 806-810.  doi: 10.1109/TCSII.2008.922472.

[26]

S. I. Niculescu, Delay Effects on Stability: A Robust Control Approach, Lecture Notes in Control and Information Sciences, 269, Springer-Verlag, London, 2001. doi: 10.1007/1-84628-553-4.

[27] V. B. Kolmanovski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$ and V. R. Nosov, Stability of Functional-Differential Equations, Mathematics in Science and Engineering, 180, Academic Press, Inc., London, 1986. 
[28] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering, 191, Academic Press, Inc., Boston, MA, 1993. 
[29]

K. ShiH. ZhuS. ZhongY. Zeng and Y. Zhang, New stability analysis for neutral type neural networks with discrete and distributed delays using a multiple integral approac, J. Franklin Inst., 352 (2015), 155-176.  doi: 10.1016/j.jfranklin.2014.10.005.

[30]

S. MuralisankarA. Manivannan and P. Balasubramaniam, Mean square delay dependent-probability-distribution stability analysis of neutral type stochastic neural networks, ISA Trans., 58 (2015), 11-19.  doi: 10.1016/j.isatra.2015.03.004.

[31]

H. ChenY. Zhang and P. Hu, Novel delay-dependent robust stability criteria for neutral stochastic delayed neural networks, Neurocomputing, 73 (2010), 2554-2561.  doi: 10.1016/j.neucom.2010.06.003.

[32]

S. LakshmananJ. H. ParkH. Y. JungO. M. Kwon and R. Rakkiyappan, A delay partitioning approach to delay-dependent stability analysis for neutral type neural networks with discrete and distributed delays, Neurocomputing, 111 (2013), 81-89.  doi: 10.1016/j.neucom.2012.12.016.

[33]

W. HuQ. Zhu and H. R. Karimi, Some improved Razumikhin stability criteria for impulsive stochastic delay differential systems, IEEE Trans. Automat. Control, 64 (2019), 5207-5213.  doi: 10.1109/TAC.2019.2911182.

[34]

S. DharaniR. Rakkiyappan and J. Cao, New delay-dependent stability criteria for switched Hopfield neural networks of neutral type with additive time-varying delay components, Neurocomputing, 151 (2015), 827-834.  doi: 10.1016/j.neucom.2014.10.014.

[35]

K. ShiS. ZhongH. ZhuX. Liu and Y. Zeng, New delay-dependent stability criteria for neutral-type neural networks with mixed random time-varying delays, Neurocomputing, 168 (2015), 896-907.  doi: 10.1016/j.neucom.2015.05.035.

[36]

G. ZhangT. WangT. Li and S. Fei, Multiple integral Lyapunov approach to mixed-delay-dependent stability of neutral neural networks, Neurocomputing, 275 (2018), 1782-1792.  doi: 10.1016/j.neucom.2017.10.021.

[37]

H. HuangQ. Du and X. Kang, Global exponential stability of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays, ISA Trans., 52 (2013), 759-767.  doi: 10.1016/j.isatra.2013.07.016.

[38]

X. LiaoY. LiuH. Wang and T. Huang, Exponential estimates and exponential stability for neutral-type neural networks with multiple delays, Neurocomputing, 149 (2015), 868-883.  doi: 10.1016/j.neucom.2014.07.048.

[39]

Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control, IEEE Trans. Automat. Control, 64 (2019), 3764-3771.  doi: 10.1109/TAC.2018.2882067.

[40]

S. Arik, An analysis of stability of neutral-type neural systems with constant time delays, J. Franklin Inst., 351 (2014), 4949-4959.  doi: 10.1016/j.jfranklin.2014.08.013.

[41]

C. H. LienK. W. YuY. F. LinY. J. Chung and L. Y. Chung, Global exponential stability for uncertain delayed neural networks of neutral type with mixed time delays, IEEE Trans. Syst. Man Cybernetics-PART B: Cybernetics, 38 (2008), 709-720.  doi: 10.1109/TSMCB.2008.918564.

[42]

Y. YangT. Liang and X. Xu, Almost sure exponential stability of stochastic Cohen-Grossberg neural networks with continuous distributed delays of neutral type, Optik, 126 (2015), 4628-4635.  doi: 10.1016/j.ijleo.2015.08.099.

[43]

R. Samli and S. Arik, New results for global stability of a class of neutral-type neural systems with time delays, Appl. Math. Comput., 210 (2009), 564-570.  doi: 10.1016/j.amc.2009.01.031.

[44]

Z. Orman, New sufficient conditions for global stability of neutral-type neural networks with time delays, Neurocomputing, 97 (2012), 141-148.  doi: 10.1016/j.neucom.2012.05.016.

[45]

C. J. ChengT. L. LiaoJ. J. Yan and C. C. Hwang, Globally asymptotic stability of a class of neutral-type neural networks with delays, IEEE Trans. Syst. Man Cybernetics-PART B: Cybernetics, 36 (2008), 1191-1195.  doi: 10.1109/TSMCB.2006.874677.

[46]

H. AkcaV. Covachev and Z. Covacheva, Global asymptotic stability of Cohen-Grossberg neural networks of neutral type, J. Math. Sci. (N.Y.), 205 (2015), 719-732.  doi: 10.1007/s10958-015-2278-8.

[47]

N. Ozcan, New conditions for global stability of neutral-type delayed Cohen-Grossberg neural networks, Neural Networks, 106 (2018), 1-7.  doi: 10.1016/j.neunet.2018.06.009.

[48]

N. Ozcan, Stability analysis of Cohen-Grossberg neural networks of neutral-type: Multiple delays case, Neural Networks, 113 (2019), 20-27.  doi: 10.1016/j.neunet.2019.01.017.

show all references

References:
[1]

L. O. Chua and L. Yang, Cellular neural networks: Applications, IEEE Trans. Circuits and Systems, 35 (1988), 1273-1290.  doi: 10.1109/31.7601.

[2]

M. A. Cohen and S. Grossberg, Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE Trans. Systems Man Cybernet., 13 (1983), 815-826.  doi: 10.1109/TSMC.1983.6313075.

[3]

J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci. U.S.A., 79 (1982), 2554-2558.  doi: 10.1073/pnas.79.8.2554.

[4]

A. GuezV. Protopopsecu and J. Barhen, On the stability, and design of nonlinear continuous neural networks, IEEE Trans. Syst. Man Cybernetics, 18 (1998), 80-87. 

[5]

J. WangY. Cai and J. Yin, Multi-start stochastic competitive Hopfield neural network for frequency assignment problem in satellite communications, Expert Syst. Appl., 38 (2011), 131-145.  doi: 10.1016/j.eswa.2010.06.027.

[6]

S. C. TongY. M. Li and H. G. Zhang, Adaptive neural network decentralized backstepping output-feedback control for nonlinear large-scale systems with time delays, IEEE Trans. Neural Networks, 22 (2011), 1073-1086.  doi: 10.1109/TNN.2011.2146274.

[7]

M. GalickiH. WitteJ. DorschelM. Eiselt and G. Griessbach, Common optimization of adaptive preprocessing units and a neural network during the learning period. Application in EEG pattern recognition, Neural Networks, 10 (1997), 1153-1163.  doi: 10.1016/S0893-6080(97)00033-6.

[8]

Q. ZhuJ. Cao and R. Rakkiyappan, Exponential input-to-state stability of stochastic Cohen-Grossberg neural networks with mixed delays, Nonlinear Dynam., 79 (2015), 1085-1098.  doi: 10.1007/s11071-014-1725-2.

[9]

Q. Zhu and J. Cao, Robust exponential stability of Markovian jump impulsive stochastic Cohen-Grossberg neural networks with mixed time delays, IEEE Trans. Neural Netw., 21 (2010), 1314-1325.  doi: 10.1109/TNN.2010.2054108.

[10]

R. ManivannanR. SamiduraiJ. CaoA. Alsaedi and F. E. Alsaadi, Stability analysis of interval time-varying delayed neural networks including neutral time-delay and leakage delay, Chaos Solitons Fractals, 114 (2018), 433-445.  doi: 10.1016/j.chaos.2018.07.041.

[11]

Q. Zhu and J. Cao, Stability analysis of Markovian jump stochastic BAM neural networks with impulse control and mixed time delays, IEEE Trans. Neural Netw. Learn. Syst., 23 (2012), 467-479.  doi: 10.1109/TNNLS.2011.2182659.

[12]

Q. SongQ. YuZ. ZhaoY. Liu and F. E. Alsaadi, Boundedness and global robust stability analysis of delayed complex-valued neural networks with interval parameter uncertainties, Neural Networks, 103 (2018), 55-62.  doi: 10.1016/j.neunet.2018.03.008.

[13]

Q. Zhu and X. Li, Exponential and almost sure exponential stability of stochastic fuzzy delayed Cohen-Grossberg neural networks, Fuzzy Sets and Systems, 203 (2012), 74-94.  doi: 10.1016/j.fss.2012.01.005.

[14]

Q. Zhu, Stability analysis of stochastic delay differential equations with Lévy noise, Systems Control Lett., 118 (2018), 62-68.  doi: 10.1016/j.sysconle.2018.05.015.

[15]

W. Xie and Q. Zhu, Mean square exponential stability of stochastic fuzzy delayed Cohen-Grossberg neural networks with expectations in the coefficients, Neurocomputing, 166 (2015), 133-139.  doi: 10.1016/j.neucom.2015.04.020.

[16]

X. TanJ. Cao and X. Li, Leader-following mean square consensus of stochastic multi-agent systems with input delay via event-triggered control, IET Control Theory Appl., 12 (2018), 299-309.  doi: 10.1049/iet-cta.2017.0462.

[17]

Q. Zhu and J. Cao, Exponential stability analysis of stochastic reactiondiffusion Cohen-Grossberg neural networks with mixed delays, Neurocomputing, 74 (2011), 3084-3091.  doi: 10.1016/j.neucom.2011.04.030.

[18]

Q. Zhu and J. Cao, $p$th moment exponential synchronization for stochastic delayed Cohen-Grossberg neural networks with Markovian switching, Nonlinear Dynam., 67 (2012), 829-845.  doi: 10.1007/s11071-011-0029-z.

[19]

C. GeC. Hua and X. Guan, New delay-dependent stability criteria for neural networks with time-varying delay using delay-decomposition approach, IEEE Trans. Neural Netw. Learn. Syst., 25 (2014), 1378-1383.  doi: 10.1109/TNNLS.2013.2285564.

[20]

Z. Wang, L. Liu, Q. H. Shan and H. Zhang, Stability criteria for recurrent neural networks with time-varying delay based on secondary delay partitioning method, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 2589–2595, . doi: 10.1109/TNNLS.2014.2387434.

[21]

X. ZhangX. LiJ. Cao and F. Miaadi, Design of memory controllers for finite-time stabilization of delayed neural networks with uncertainty, J. Franklin Inst., 355 (2018), 5394-5413.  doi: 10.1016/j.jfranklin.2018.05.037.

[22]

I. StamovaT. Stamov and X. Li, Global exponential stability of a class of impulsive cellular neural networks with supremums, Internat. J. Adapt. Control Signal Process., 28 (2014), 1227-1239.  doi: 10.1002/acs.2440.

[23]

Q. ZhuR. Rakkiyappan and A. Chandrasekar, Stochastic stability of Markovian jump BAM neural networks with leakage delays and impulse control, Neurocomputing, 136 (2014), 136-151.  doi: 10.1016/j.neucom.2014.01.018.

[24]

H. ChenP. ShiC. C. Lim and P. Hu, Exponential stability for neutral stochastic Markov systems with time-varying delay and its applications, IEEE Trans. Cybernetics, 46 (2016), 1350-1362.  doi: 10.1109/TCYB.2015.2442274.

[25]

L. ChengZ. G. Hou and M. Tan, A neutral-type delayed projection neural network for solving nonlinear variational inequalities, IEEE Trans. Circuits Syst. II: Express Briefs, 55 (2008), 806-810.  doi: 10.1109/TCSII.2008.922472.

[26]

S. I. Niculescu, Delay Effects on Stability: A Robust Control Approach, Lecture Notes in Control and Information Sciences, 269, Springer-Verlag, London, 2001. doi: 10.1007/1-84628-553-4.

[27] V. B. Kolmanovski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$ and V. R. Nosov, Stability of Functional-Differential Equations, Mathematics in Science and Engineering, 180, Academic Press, Inc., London, 1986. 
[28] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering, 191, Academic Press, Inc., Boston, MA, 1993. 
[29]

K. ShiH. ZhuS. ZhongY. Zeng and Y. Zhang, New stability analysis for neutral type neural networks with discrete and distributed delays using a multiple integral approac, J. Franklin Inst., 352 (2015), 155-176.  doi: 10.1016/j.jfranklin.2014.10.005.

[30]

S. MuralisankarA. Manivannan and P. Balasubramaniam, Mean square delay dependent-probability-distribution stability analysis of neutral type stochastic neural networks, ISA Trans., 58 (2015), 11-19.  doi: 10.1016/j.isatra.2015.03.004.

[31]

H. ChenY. Zhang and P. Hu, Novel delay-dependent robust stability criteria for neutral stochastic delayed neural networks, Neurocomputing, 73 (2010), 2554-2561.  doi: 10.1016/j.neucom.2010.06.003.

[32]

S. LakshmananJ. H. ParkH. Y. JungO. M. Kwon and R. Rakkiyappan, A delay partitioning approach to delay-dependent stability analysis for neutral type neural networks with discrete and distributed delays, Neurocomputing, 111 (2013), 81-89.  doi: 10.1016/j.neucom.2012.12.016.

[33]

W. HuQ. Zhu and H. R. Karimi, Some improved Razumikhin stability criteria for impulsive stochastic delay differential systems, IEEE Trans. Automat. Control, 64 (2019), 5207-5213.  doi: 10.1109/TAC.2019.2911182.

[34]

S. DharaniR. Rakkiyappan and J. Cao, New delay-dependent stability criteria for switched Hopfield neural networks of neutral type with additive time-varying delay components, Neurocomputing, 151 (2015), 827-834.  doi: 10.1016/j.neucom.2014.10.014.

[35]

K. ShiS. ZhongH. ZhuX. Liu and Y. Zeng, New delay-dependent stability criteria for neutral-type neural networks with mixed random time-varying delays, Neurocomputing, 168 (2015), 896-907.  doi: 10.1016/j.neucom.2015.05.035.

[36]

G. ZhangT. WangT. Li and S. Fei, Multiple integral Lyapunov approach to mixed-delay-dependent stability of neutral neural networks, Neurocomputing, 275 (2018), 1782-1792.  doi: 10.1016/j.neucom.2017.10.021.

[37]

H. HuangQ. Du and X. Kang, Global exponential stability of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays, ISA Trans., 52 (2013), 759-767.  doi: 10.1016/j.isatra.2013.07.016.

[38]

X. LiaoY. LiuH. Wang and T. Huang, Exponential estimates and exponential stability for neutral-type neural networks with multiple delays, Neurocomputing, 149 (2015), 868-883.  doi: 10.1016/j.neucom.2014.07.048.

[39]

Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control, IEEE Trans. Automat. Control, 64 (2019), 3764-3771.  doi: 10.1109/TAC.2018.2882067.

[40]

S. Arik, An analysis of stability of neutral-type neural systems with constant time delays, J. Franklin Inst., 351 (2014), 4949-4959.  doi: 10.1016/j.jfranklin.2014.08.013.

[41]

C. H. LienK. W. YuY. F. LinY. J. Chung and L. Y. Chung, Global exponential stability for uncertain delayed neural networks of neutral type with mixed time delays, IEEE Trans. Syst. Man Cybernetics-PART B: Cybernetics, 38 (2008), 709-720.  doi: 10.1109/TSMCB.2008.918564.

[42]

Y. YangT. Liang and X. Xu, Almost sure exponential stability of stochastic Cohen-Grossberg neural networks with continuous distributed delays of neutral type, Optik, 126 (2015), 4628-4635.  doi: 10.1016/j.ijleo.2015.08.099.

[43]

R. Samli and S. Arik, New results for global stability of a class of neutral-type neural systems with time delays, Appl. Math. Comput., 210 (2009), 564-570.  doi: 10.1016/j.amc.2009.01.031.

[44]

Z. Orman, New sufficient conditions for global stability of neutral-type neural networks with time delays, Neurocomputing, 97 (2012), 141-148.  doi: 10.1016/j.neucom.2012.05.016.

[45]

C. J. ChengT. L. LiaoJ. J. Yan and C. C. Hwang, Globally asymptotic stability of a class of neutral-type neural networks with delays, IEEE Trans. Syst. Man Cybernetics-PART B: Cybernetics, 36 (2008), 1191-1195.  doi: 10.1109/TSMCB.2006.874677.

[46]

H. AkcaV. Covachev and Z. Covacheva, Global asymptotic stability of Cohen-Grossberg neural networks of neutral type, J. Math. Sci. (N.Y.), 205 (2015), 719-732.  doi: 10.1007/s10958-015-2278-8.

[47]

N. Ozcan, New conditions for global stability of neutral-type delayed Cohen-Grossberg neural networks, Neural Networks, 106 (2018), 1-7.  doi: 10.1016/j.neunet.2018.06.009.

[48]

N. Ozcan, Stability analysis of Cohen-Grossberg neural networks of neutral-type: Multiple delays case, Neural Networks, 113 (2019), 20-27.  doi: 10.1016/j.neunet.2019.01.017.

[1]

Serge Nicaise. Stability and asymptotic properties of dissipative evolution equations coupled with ordinary differential equations. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021057

[2]

Sylvia Novo, Rafael Obaya, Ana M. Sanz. Exponential stability in non-autonomous delayed equations with applications to neural networks. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 517-536. doi: 10.3934/dcds.2007.18.517

[3]

Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281

[4]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[5]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

[6]

Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678

[7]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[8]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure and Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[9]

Ricai Luo, Honglei Xu, Wu-Sheng Wang, Jie Sun, Wei Xu. A weak condition for global stability of delayed neural networks. Journal of Industrial and Management Optimization, 2016, 12 (2) : 505-514. doi: 10.3934/jimo.2016.12.505

[10]

Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

[11]

Tomás Caraballo, Carlos Ogouyandjou, Fulbert Kuessi Allognissode, Mamadou Abdoul Diop. Existence and exponential stability for neutral stochastic integro–differential equations with impulses driven by a Rosenblatt process. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 507-528. doi: 10.3934/dcdsb.2019251

[12]

Tian Zhang, Chuanhou Gao. Stability with general decay rate of hybrid neutral stochastic pantograph differential equations driven by Lévy noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3725-3747. doi: 10.3934/dcdsb.2021204

[13]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[14]

Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353

[15]

Yongkun Li, Bing Li. Pseudo compact almost automorphy of neutral type Clifford-valued neural networks with mixed delays. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021248

[16]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[17]

Yongqiang Suo, Chenggui Yuan. Large deviations for neutral stochastic functional differential equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2369-2384. doi: 10.3934/cpaa.2020103

[18]

Mustafa Hasanbulli, Yuri V. Rogovchenko. Classification of nonoscillatory solutions of nonlinear neutral differential equations. Conference Publications, 2009, 2009 (Special) : 340-348. doi: 10.3934/proc.2009.2009.340

[19]

Hernán R. Henríquez, Claudio Cuevas, Juan C. Pozo, Herme Soto. Existence of solutions for a class of abstract neutral differential equations. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2455-2482. doi: 10.3934/dcds.2017106

[20]

T. Candan, R.S. Dahiya. Oscillation of mixed neutral differential equations with forcing term. Conference Publications, 2003, 2003 (Special) : 167-172. doi: 10.3934/proc.2003.2003.167

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (297)
  • HTML views (373)
  • Cited by (0)

Other articles
by authors

[Back to Top]