-
Previous Article
A mathematical model for marine dinoflagellates blooms
- DCDS-S Home
- This Issue
-
Next Article
Instability of free interfaces in premixed flame propagation
Equipartition of energy for nonautonomous damped wave equations
1. | Dipartimento di Matematica, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy |
2. | Department of Mathematical Sciences, University of Memphis, 373 Dunn Hall, Memphis, TN 38152-3240, USA |
$ \begin{equation} u''+2Bu'+A^2u = 0 \;\;\;\;\;\;({\rm DWE})\end{equation} $ |
$ K(t) = \Vert u'(t)\Vert^2,\, P(t) = \Vert Au(t)\Vert^2, $ |
$ A,B $ |
$\begin{equation} \lim\limits_{t\to\infty} \frac{K(t)}{P(t)} = 1 \;\;\;\;\;\;({\rm AEE})\end{equation}$ |
References:
[1] |
M. D'Abbicco, M. R. Ebert and S. Lucente,
Self-similar asymptotic profile of the solution to a nonlinear evolution equation with critical dissipation, Math. Methods Appl. Sci., 40 (2017), 6480-6494.
doi: 10.1002/mma.4469. |
[2] |
M. D'Abbicco, G. Girardi and M. Reissig,
A scale of critical exponents for semilinear waves with time-dependent damping and mass terms, Nonlinear Anal., 179 (2019), 15-40.
doi: 10.1016/j.na.2018.08.006. |
[3] |
J. L. Doob, Stochastic Processes, John Wiley and Sons, Inc., New York, Chapman and Hall, Ltd., 1953. |
[4] |
G. R. Goldstein, J. A. Goldstein and F. Travessini,
Equipartition of energy for nonautonomous wave equations, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 75-85.
doi: 10.3934/dcdss.2017004. |
[5] |
J. A. Goldstein,
An asymptotic property of solutions of wave equations, Proc. Amer. Math. Soc., 23 (1969), 359-363.
doi: 10.1090/S0002-9939-1969-0250125-1. |
[6] |
J. A. Goldstein,
An asymptotic property of solutions of wave equations. II, J. Math. Anal. Appl., 32 (1970), 392-399.
doi: 10.1016/0022-247X(70)90305-7. |
[7] |
J. A. Goldstein, Semigroups of Linear Operators and Applications, 2nd edition, Dover Publications, Inc., Mineola, New York, 2017. |
[8] |
J. A. Goldstein and G. Reyes,
Equipartition of operator-weighted energies in damped wave equations, Asymptot. Anal., 81 (2013), 171-187.
doi: 10.3233/ASY-2012-1124. |
[9] |
T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995. |
show all references
References:
[1] |
M. D'Abbicco, M. R. Ebert and S. Lucente,
Self-similar asymptotic profile of the solution to a nonlinear evolution equation with critical dissipation, Math. Methods Appl. Sci., 40 (2017), 6480-6494.
doi: 10.1002/mma.4469. |
[2] |
M. D'Abbicco, G. Girardi and M. Reissig,
A scale of critical exponents for semilinear waves with time-dependent damping and mass terms, Nonlinear Anal., 179 (2019), 15-40.
doi: 10.1016/j.na.2018.08.006. |
[3] |
J. L. Doob, Stochastic Processes, John Wiley and Sons, Inc., New York, Chapman and Hall, Ltd., 1953. |
[4] |
G. R. Goldstein, J. A. Goldstein and F. Travessini,
Equipartition of energy for nonautonomous wave equations, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 75-85.
doi: 10.3934/dcdss.2017004. |
[5] |
J. A. Goldstein,
An asymptotic property of solutions of wave equations, Proc. Amer. Math. Soc., 23 (1969), 359-363.
doi: 10.1090/S0002-9939-1969-0250125-1. |
[6] |
J. A. Goldstein,
An asymptotic property of solutions of wave equations. II, J. Math. Anal. Appl., 32 (1970), 392-399.
doi: 10.1016/0022-247X(70)90305-7. |
[7] |
J. A. Goldstein, Semigroups of Linear Operators and Applications, 2nd edition, Dover Publications, Inc., Mineola, New York, 2017. |
[8] |
J. A. Goldstein and G. Reyes,
Equipartition of operator-weighted energies in damped wave equations, Asymptot. Anal., 81 (2013), 171-187.
doi: 10.3233/ASY-2012-1124. |
[9] |
T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995. |
[1] |
Gisèle Ruiz Goldstein, Jerome A. Goldstein, Fabiana Travessini De Cezaro. Equipartition of energy for nonautonomous wave equations. Discrete and Continuous Dynamical Systems - S, 2017, 10 (1) : 75-85. doi: 10.3934/dcdss.2017004 |
[2] |
Dandan Li. Asymptotics of singularly perturbed damped wave equations with super-cubic exponent. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 583-600. doi: 10.3934/dcdsb.2021056 |
[3] |
Ioana Moise, Ricardo Rosa, Xiaoming Wang. Attractors for noncompact nonautonomous systems via energy equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 473-496. doi: 10.3934/dcds.2004.10.473 |
[4] |
Petronela Radu, Grozdena Todorova, Borislav Yordanov. Higher order energy decay rates for damped wave equations with variable coefficients. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 609-629. doi: 10.3934/dcdss.2009.2.609 |
[5] |
Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations and Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017 |
[6] |
Ge Zu, Bin Guo. Bounds for lifespan of solutions to strongly damped semilinear wave equations with logarithmic sources and arbitrary initial energy. Evolution Equations and Control Theory, 2021, 10 (2) : 259-270. doi: 10.3934/eect.2020065 |
[7] |
Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure and Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921 |
[8] |
Mohammed Aassila. On energy decay rate for linear damped systems. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851 |
[9] |
John M. Ball. Global attractors for damped semilinear wave equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 31-52. doi: 10.3934/dcds.2004.10.31 |
[10] |
Lili Fan, Hongxia Liu, Huijiang Zhao, Qingyang Zou. Global stability of stationary waves for damped wave equations. Kinetic and Related Models, 2013, 6 (4) : 729-760. doi: 10.3934/krm.2013.6.729 |
[11] |
P. Fabrie, C. Galusinski, A. Miranville. Uniform inertial sets for damped wave equations. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 393-418. doi: 10.3934/dcds.2000.6.393 |
[12] |
Alexandre Nolasco de Carvalho, Jan W. Cholewa, Tomasz Dlotko. Damped wave equations with fast growing dissipative nonlinearities. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1147-1165. doi: 10.3934/dcds.2009.24.1147 |
[13] |
Maykel Belluzi, Flank D. M. Bezerra, Marcelo J. D. Nascimento. On spectral and fractional powers of damped wave equations. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022071 |
[14] |
Carlos E. Kenig. The method of energy channels for nonlinear wave equations. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6979-6993. doi: 10.3934/dcds.2019240 |
[15] |
Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065 |
[16] |
Mengyun Liu, Chengbo Wang. Global existence for semilinear damped wave equations in relation with the Strauss conjecture. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 709-724. doi: 10.3934/dcds.2020058 |
[17] |
Bouthaina Abdelhedi. Existence of periodic solutions of a system of damped wave equations in thin domains. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 767-800. doi: 10.3934/dcds.2008.20.767 |
[18] |
Feng Zhou, Chunyou Sun, Xin Li. Dynamics for the damped wave equations on time-dependent domains. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1645-1674. doi: 10.3934/dcdsb.2018068 |
[19] |
Nemanja Kosovalić, Brian Pigott. Self-excited vibrations for damped and delayed higher dimensional wave equations. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2413-2435. doi: 10.3934/dcds.2019102 |
[20] |
Filippo Dell'Oro. Global attractors for strongly damped wave equations with subcritical-critical nonlinearities. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1015-1027. doi: 10.3934/cpaa.2013.12.1015 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]