February  2021, 14(2): 597-613. doi: 10.3934/dcdss.2020364

Equipartition of energy for nonautonomous damped wave equations

1. 

Dipartimento di Matematica, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy

2. 

Department of Mathematical Sciences, University of Memphis, 373 Dunn Hall, Memphis, TN 38152-3240, USA

* Corresponding author: Jerome A. Goldstein

Dedicated to Michel Pierre on his seventieth birthday

Received  December 2019 Published  February 2021 Early access  May 2020

The kinetic and potential energies for the damped wave equation
$ \begin{equation} u''+2Bu'+A^2u = 0 \;\;\;\;\;\;({\rm DWE})\end{equation} $
are defined by
$ K(t) = \Vert u'(t)\Vert^2,\, P(t) = \Vert Au(t)\Vert^2, $
where
$ A,B $
are suitable commuting selfadjoint operators. Asymptotic equipartition of energy means
$\begin{equation} \lim\limits_{t\to\infty} \frac{K(t)}{P(t)} = 1 \;\;\;\;\;\;({\rm AEE})\end{equation}$
for all (finite energy) non-zero solutions of (DWE). The main result of this paper is the proof of a result analogous to (AEE) for a nonautonomous version of (DWE).
Citation: Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364
References:
[1]

M. D'AbbiccoM. R. Ebert and S. Lucente, Self-similar asymptotic profile of the solution to a nonlinear evolution equation with critical dissipation, Math. Methods Appl. Sci., 40 (2017), 6480-6494.  doi: 10.1002/mma.4469.

[2]

M. D'AbbiccoG. Girardi and M. Reissig, A scale of critical exponents for semilinear waves with time-dependent damping and mass terms, Nonlinear Anal., 179 (2019), 15-40.  doi: 10.1016/j.na.2018.08.006.

[3]

J. L. Doob, Stochastic Processes, John Wiley and Sons, Inc., New York, Chapman and Hall, Ltd., 1953.

[4]

G. R. GoldsteinJ. A. Goldstein and F. Travessini, Equipartition of energy for nonautonomous wave equations, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 75-85.  doi: 10.3934/dcdss.2017004.

[5]

J. A. Goldstein, An asymptotic property of solutions of wave equations, Proc. Amer. Math. Soc., 23 (1969), 359-363.  doi: 10.1090/S0002-9939-1969-0250125-1.

[6]

J. A. Goldstein, An asymptotic property of solutions of wave equations. II, J. Math. Anal. Appl., 32 (1970), 392-399.  doi: 10.1016/0022-247X(70)90305-7.

[7]

J. A. Goldstein, Semigroups of Linear Operators and Applications, 2nd edition, Dover Publications, Inc., Mineola, New York, 2017.

[8]

J. A. Goldstein and G. Reyes, Equipartition of operator-weighted energies in damped wave equations, Asymptot. Anal., 81 (2013), 171-187.  doi: 10.3233/ASY-2012-1124.

[9]

T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995.

show all references

References:
[1]

M. D'AbbiccoM. R. Ebert and S. Lucente, Self-similar asymptotic profile of the solution to a nonlinear evolution equation with critical dissipation, Math. Methods Appl. Sci., 40 (2017), 6480-6494.  doi: 10.1002/mma.4469.

[2]

M. D'AbbiccoG. Girardi and M. Reissig, A scale of critical exponents for semilinear waves with time-dependent damping and mass terms, Nonlinear Anal., 179 (2019), 15-40.  doi: 10.1016/j.na.2018.08.006.

[3]

J. L. Doob, Stochastic Processes, John Wiley and Sons, Inc., New York, Chapman and Hall, Ltd., 1953.

[4]

G. R. GoldsteinJ. A. Goldstein and F. Travessini, Equipartition of energy for nonautonomous wave equations, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 75-85.  doi: 10.3934/dcdss.2017004.

[5]

J. A. Goldstein, An asymptotic property of solutions of wave equations, Proc. Amer. Math. Soc., 23 (1969), 359-363.  doi: 10.1090/S0002-9939-1969-0250125-1.

[6]

J. A. Goldstein, An asymptotic property of solutions of wave equations. II, J. Math. Anal. Appl., 32 (1970), 392-399.  doi: 10.1016/0022-247X(70)90305-7.

[7]

J. A. Goldstein, Semigroups of Linear Operators and Applications, 2nd edition, Dover Publications, Inc., Mineola, New York, 2017.

[8]

J. A. Goldstein and G. Reyes, Equipartition of operator-weighted energies in damped wave equations, Asymptot. Anal., 81 (2013), 171-187.  doi: 10.3233/ASY-2012-1124.

[9]

T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995.

[1]

Gisèle Ruiz Goldstein, Jerome A. Goldstein, Fabiana Travessini De Cezaro. Equipartition of energy for nonautonomous wave equations. Discrete and Continuous Dynamical Systems - S, 2017, 10 (1) : 75-85. doi: 10.3934/dcdss.2017004

[2]

Dandan Li. Asymptotics of singularly perturbed damped wave equations with super-cubic exponent. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 583-600. doi: 10.3934/dcdsb.2021056

[3]

Ioana Moise, Ricardo Rosa, Xiaoming Wang. Attractors for noncompact nonautonomous systems via energy equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 473-496. doi: 10.3934/dcds.2004.10.473

[4]

Petronela Radu, Grozdena Todorova, Borislav Yordanov. Higher order energy decay rates for damped wave equations with variable coefficients. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 609-629. doi: 10.3934/dcdss.2009.2.609

[5]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations and Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[6]

Ge Zu, Bin Guo. Bounds for lifespan of solutions to strongly damped semilinear wave equations with logarithmic sources and arbitrary initial energy. Evolution Equations and Control Theory, 2021, 10 (2) : 259-270. doi: 10.3934/eect.2020065

[7]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure and Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[8]

Mohammed Aassila. On energy decay rate for linear damped systems. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851

[9]

Joseph Barrera. On the Asymptotics of Some Strongly Damped Beam Equations with Structural Damping. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022130

[10]

John M. Ball. Global attractors for damped semilinear wave equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 31-52. doi: 10.3934/dcds.2004.10.31

[11]

Lili Fan, Hongxia Liu, Huijiang Zhao, Qingyang Zou. Global stability of stationary waves for damped wave equations. Kinetic and Related Models, 2013, 6 (4) : 729-760. doi: 10.3934/krm.2013.6.729

[12]

P. Fabrie, C. Galusinski, A. Miranville. Uniform inertial sets for damped wave equations. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 393-418. doi: 10.3934/dcds.2000.6.393

[13]

Alexandre Nolasco de Carvalho, Jan W. Cholewa, Tomasz Dlotko. Damped wave equations with fast growing dissipative nonlinearities. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1147-1165. doi: 10.3934/dcds.2009.24.1147

[14]

Maykel Belluzi, Flank D. M. Bezerra, Marcelo J. D. Nascimento. On spectral and fractional powers of damped wave equations. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2739-2773. doi: 10.3934/cpaa.2022071

[15]

Carlos E. Kenig. The method of energy channels for nonlinear wave equations. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6979-6993. doi: 10.3934/dcds.2019240

[16]

Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065

[17]

Mengyun Liu, Chengbo Wang. Global existence for semilinear damped wave equations in relation with the Strauss conjecture. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 709-724. doi: 10.3934/dcds.2020058

[18]

Bouthaina Abdelhedi. Existence of periodic solutions of a system of damped wave equations in thin domains. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 767-800. doi: 10.3934/dcds.2008.20.767

[19]

Feng Zhou, Chunyou Sun, Xin Li. Dynamics for the damped wave equations on time-dependent domains. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1645-1674. doi: 10.3934/dcdsb.2018068

[20]

Nemanja Kosovalić, Brian Pigott. Self-excited vibrations for damped and delayed higher dimensional wave equations. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2413-2435. doi: 10.3934/dcds.2019102

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (246)
  • HTML views (278)
  • Cited by (0)

[Back to Top]