February  2021, 14(2): 745-767. doi: 10.3934/dcdss.2020365

A semilinear heat equation with initial data in negative Sobolev spaces

Kusauchi Yamashina 53-7, Kyotanabe City, Kyoto, Japan

Received  December 2019 Revised  January 2020 Published  May 2020

We give a sufficient conditions for the existence, locally in time, of solutions to semilinear heat equations with nonlinearities of type $ |u|^{p-1}u $, when the initial datas are in negative Sobolev spaces $ H_q^{-s}(\Omega) $, $ \Omega \subset \mathbb{R}^N $, $ s \in [0,2] $, $ q \in (1,\infty) $. Existence is for instance proved for $ q>\frac{N}{2}\left(\frac{1}{p-1}-\frac{s}{2}\right)^{-1} $. This is an extension to $ s \in (0,2] $ of previous results known for $ s = 0 $ with the critical value $ \frac{N(p-1)}{2} $. We also observe the uniqueness of solutions in some appropriate class.

Citation: Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365
References:
[1]

P. Baras, Non-unicité des solutions d'une équation d'évolution non-linéaire, Ann. Fac. Sci. Toulouse Math., 5 (1983), 287-302.  doi: 10.5802/afst.600.  Google Scholar

[2]

P. Baras and M. Pierre, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 185-212.  doi: 10.1016/S0294-1449(16)30402-4.  Google Scholar

[3]

P. Baras and M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Applicable Anal., 18 (1984), 111-149.  doi: 10.1080/00036818408839514.  Google Scholar

[4]

H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math., 68 (1996), 277-304.  doi: 10.1007/BF02790212.  Google Scholar

[5]

H. Brezis and A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl., 62 (1983), 73-97.   Google Scholar

[6]

M. CowlingI. DoustA. Mcintosh and A. Yagi, Banach space operators with a bounded $H^\infty$ functional calculus, J. Austral. Math. Soc. Ser. A, 60 (1996), 59-89.  doi: 10.1017/S1446788700037393.  Google Scholar

[7]

X. T. Duong, $H^\infty$ functional calculus of second order elliptic partial differntial operators on $L^p$ spaces, Miniconference on Operators in Analysis (Sydney, 1989), Proc. Centre Math. Anal. Austral. Nat. Univ., Vol. 24, Austral. Nat. Univ., Canberra, 1990, 91–102.  Google Scholar

[8]

A. Haraux and F. B. Weissler, Nonuniqueness for a semilinear initial value problem, Indiana Univ. Math. J., 31 (1982), 167-189.  doi: 10.1512/iumj.1982.31.31016.  Google Scholar

[9]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., Vol. 840, Springer-Verlag, Berlin, (1981).  Google Scholar

[10]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I, Springer-Verlag, New York-Heidelberg, (1972).  Google Scholar

[11]

E. Nakaguchi and K. Osaki, Global existence of solutions to an $n$-dimensional parabolic-parabolic system for chemotaxis with logistic-type growth and superlinear production, Osaka J. Math., 55 (2018), 51-70.   Google Scholar

[12]

M. Pierre, Existence criterion of nonnegative solutions for some non monotone semilinear problems, Semesterbericht Funktionalanalysis Tübingen, Wintersemester, 1983/84,249–258. Google Scholar

[13]

F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Math., Vol. 1072, Springer-Verlag, Berlin, 1984. doi: 10.1007/BFb0099278.  Google Scholar

[14]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Publishing Co., Amsterdam-New York, 1978.  Google Scholar

[15]

F. B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^p$, Indiana Univ. Math. J., 29 (1980), 79-102.  doi: 10.1512/iumj.1980.29.29007.  Google Scholar

[16]

A. Yagi, $H^\infty$ Functional Calculus and Characterization of Domains of Fractional Powers, in Oper. Theory Adv. Appl., Vol. 187, 2008,217–235. doi: 10.1007/978-3-7643-8893-5_15.  Google Scholar

[17]

A. Yagi, Abstract Parabolic Evolution Equations and their Applications, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04631-5.  Google Scholar

show all references

References:
[1]

P. Baras, Non-unicité des solutions d'une équation d'évolution non-linéaire, Ann. Fac. Sci. Toulouse Math., 5 (1983), 287-302.  doi: 10.5802/afst.600.  Google Scholar

[2]

P. Baras and M. Pierre, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 185-212.  doi: 10.1016/S0294-1449(16)30402-4.  Google Scholar

[3]

P. Baras and M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Applicable Anal., 18 (1984), 111-149.  doi: 10.1080/00036818408839514.  Google Scholar

[4]

H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math., 68 (1996), 277-304.  doi: 10.1007/BF02790212.  Google Scholar

[5]

H. Brezis and A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl., 62 (1983), 73-97.   Google Scholar

[6]

M. CowlingI. DoustA. Mcintosh and A. Yagi, Banach space operators with a bounded $H^\infty$ functional calculus, J. Austral. Math. Soc. Ser. A, 60 (1996), 59-89.  doi: 10.1017/S1446788700037393.  Google Scholar

[7]

X. T. Duong, $H^\infty$ functional calculus of second order elliptic partial differntial operators on $L^p$ spaces, Miniconference on Operators in Analysis (Sydney, 1989), Proc. Centre Math. Anal. Austral. Nat. Univ., Vol. 24, Austral. Nat. Univ., Canberra, 1990, 91–102.  Google Scholar

[8]

A. Haraux and F. B. Weissler, Nonuniqueness for a semilinear initial value problem, Indiana Univ. Math. J., 31 (1982), 167-189.  doi: 10.1512/iumj.1982.31.31016.  Google Scholar

[9]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., Vol. 840, Springer-Verlag, Berlin, (1981).  Google Scholar

[10]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I, Springer-Verlag, New York-Heidelberg, (1972).  Google Scholar

[11]

E. Nakaguchi and K. Osaki, Global existence of solutions to an $n$-dimensional parabolic-parabolic system for chemotaxis with logistic-type growth and superlinear production, Osaka J. Math., 55 (2018), 51-70.   Google Scholar

[12]

M. Pierre, Existence criterion of nonnegative solutions for some non monotone semilinear problems, Semesterbericht Funktionalanalysis Tübingen, Wintersemester, 1983/84,249–258. Google Scholar

[13]

F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Math., Vol. 1072, Springer-Verlag, Berlin, 1984. doi: 10.1007/BFb0099278.  Google Scholar

[14]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Publishing Co., Amsterdam-New York, 1978.  Google Scholar

[15]

F. B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^p$, Indiana Univ. Math. J., 29 (1980), 79-102.  doi: 10.1512/iumj.1980.29.29007.  Google Scholar

[16]

A. Yagi, $H^\infty$ Functional Calculus and Characterization of Domains of Fractional Powers, in Oper. Theory Adv. Appl., Vol. 187, 2008,217–235. doi: 10.1007/978-3-7643-8893-5_15.  Google Scholar

[17]

A. Yagi, Abstract Parabolic Evolution Equations and their Applications, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04631-5.  Google Scholar

[1]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[2]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[3]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[4]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[5]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[6]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[7]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[8]

Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389

[9]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[10]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[11]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452

[12]

Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405

[13]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[14]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[15]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[16]

Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021038

[17]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[18]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[19]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[20]

Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (131)
  • HTML views (315)
  • Cited by (0)

Other articles
by authors

[Back to Top]