April  2021, 14(4): 1213-1231. doi: 10.3934/dcdss.2020376

Observer-based control for a class of hybrid linear and nonlinear systems

1. 

University of Genoa (DIME), Via Opera Pia 15, 16145 Genova, Italy

2. 

Laboratoire de Mathématiques Pures et Appliquées, University Mouloud Mammeri of Tizi-Ouzou, B.P. No. 17 RP, 15000 Tizi-Ouzou, Algeria

3. 

Centre de Recherche en Automatique de Nancy, University of Lorraine, CNRS UMR 7039, F-54400 Cosnes et Romain, France

* Corresponding author: A. Alessandri

Received  November 2019 Revised  February 2020 Published  April 2021 Early access  May 2020

An approach to output feedback control for hybrid discrete-time systems subject to uncertain mode transitions is proposed. The system dynamics may assume different modes upon the occurrence of a switching that is not directly measurable. Since the current system mode is unknown, a regulation scheme is proposed by combining a Luenberger observer to estimate the continuous state, a mode estimator, and a controller fed with the estimates of both continuous state variables and mode. The closed-loop stability is ensured under suitable conditions given in terms of linear matrix inequalities. Since complexity and conservativeness grow with the increase of the modes, we address the problem of reducing the number of linear matrix inequalities by providing more easily tractable stability conditions. Such conditions are extended to deal with systems having also Lipschitz nonlinearities and affected by disturbances. The effectiveness of the proposed approach is shown by means of simulations.

Citation: A. Alessandri, F. Bedouhene, D. Bouhadjra, A. Zemouche, P. Bagnerini. Observer-based control for a class of hybrid linear and nonlinear systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1213-1231. doi: 10.3934/dcdss.2020376
References:
[1]

A. AlessandriM. Baglietto and G. Battistelli, Receding-horizon estimation for switching discrete-time linear systems, IEEE Trans. on Automatic Control, 50 (2005), 1736-1748.  doi: 10.1109/TAC.2005.858684.

[2]

A. AlessandriM. Baglietto and G. Battistelli, Luenberger observers for switching discrete-time linear systems, International Journal of Control, 80 (2007), 1931-1943.  doi: 10.1080/00207170701481683.

[3]

A. Alessandri and F. Boem, State observers for systems subject to bounded disturbances using quadratic boundedness, IEEE Trans. on Automatic Control, to appear.

[4]

F. BlanchiniS. Miani and F. Mesquine, A separation principle for linear switching systems and parametrization of all stabilizing controllers, IEEE Trans. on Automatic Control, 54 (2009), 279-292.  doi: 10.1109/TAC.2008.2010896.

[5]

S. CourtK. Kunisch and L. Pfeiffer, Hybrid optimal control problems for a class of semilinear parabolic equations, Discrete and Continuous Dynamical Systems - Series S, 11 (2018), 1031-1060.  doi: 10.3934/dcdss.2018060.

[6]

M. de OliveiraJ. Bernussou and J. Geromel, A new discrete-time robust stability condition, Systems & Control Letters, 37 (1999), 261-265.  doi: 10.1016/S0167-6911(99)00035-3.

[7]

R. EssickJ.-W. Lee and G. Dullerud, Control of linear switched systems with receding horizon modal information, IEEE Trans. on Automatic Control, 59 (2014), 2340-2352.  doi: 10.1109/TAC.2014.2321251.

[8]

B. GrandvalletA. ZemoucheH. Souley-Ali and M. Boutayeb, New LMI condition for observer-based $H_{\infty}$ stabilization of a class of nonlinear discrete-time systems, SIAM Journal on Control and Optimization, 51 (2013), 784-800.  doi: 10.1137/11085623X.

[9]

R. Guo and L. Song, Optical chaotic secure algorithm based on space laser communication, Discrete and Continuous Dynamical Systems - Series S, 12 (2019), 1355-1369.  doi: 10.3934/dcdss.2019093.

[10]

M. HalimiG. Millerioux and J. Daafouz, Model-based modes detection and discernibility for switched affine discrete-time systems, IEEE Trans. on Automatic Control, 60 (2015), 1501-1514.  doi: 10.1109/TAC.2014.2383012.

[11]

W. HeemelsJ. Daafouz and G. Millerioux, Observer-based control of discrete-time LPV systems with uncertain parameters, IEEE Trans. on Automatic Control, 55 (2010), 2130-2135.  doi: 10.1109/TAC.2010.2051072.

[12]

S. Ibrir, Static output feedback and guaranteed cost control of a class of discrete-time nonlinear systems with partial state measurements, Nonlinear Analysis, 68 (2008), 1784-1792.  doi: 10.1016/j.na.2007.01.011.

[13]

X.-Q. Jiang and L.-C. Zhang, Stock price fluctuation prediction method based on time series analysis, Discrete and Continuous Dynamical Systems - Series S, 12 (2019), 915-927.  doi: 10.3934/dcdss.2019061.

[14]

H. KheloufiF. BedouheneA. Zemouche and A. Alessandri, Observer-based stabilisation of linear systems with parameter uncertainties by using enhanced LMI conditions, Int. Journal of Control, 88 (2015), 1189-1200.  doi: 10.1080/00207179.2014.999258.

[15]

J. Li and Y. Liu, Stabilization of a class of discrete-time switched systems via observer-based output feedback, Journal of Control Theory and Applications, 5 (2007), 307-311.  doi: 10.1007/s11768-006-6064-5.

[16]

Z. LiC. Wen and Y. Soh, Observer-based stabilization of switching linear systems, Automatica, 39 (2003), 517-524.  doi: 10.1016/S0005-1098(02)00267-4.

[17]

W. Lv and S. Ji, Atmospheric environmental quality assessment method based on analytic hierarchy process, Discrete and Continuous Dynamical Systems - Series S, 12 (2019), 941-955.  doi: 10.3934/dcdss.2019063.

[18]

Y. QiuW. Chen and Q. Nie, A hybrid method for stiff reaction-diffusion equations, Discrete and Continuous Dynamical Systems - Series B, 24 (2019), 6387-6417.  doi: 10.3934/dcdsb.2019144.

[19]

R. Rajamani, W. Jeon, H. Movahedi and A. Zemouche, On the need for switched-gain observers for non-monotonic nonlinear systems, Automatica J. IFAC, 114 (2020), 108814, 12 pp. doi: 10.1016/j.automatica.2020.108814.

[20]

Z. Song and J. Zhao, Observer-based robust $H_{\infty}$ control for uncertain switched systems, Journal of Control Theory and Applications, 5 (2007), 278-284.  doi: 10.1007/s11768-006-6053-8.

[21]

W. XiangJ. Xiao and M. Iqbal, Robust observer design for nonlinear uncertain switched systems under asynchronous switching, Nonlinear Analysis: Hybrid Systems, 6 (2012), 754-773.  doi: 10.1016/j.nahs.2011.08.001.

[22]

A. Zemouche and M. Boutayeb, On LMI conditions to design observers for Lipschitz nonlinear systems, Automatica, 49 (2013), 585-591.  doi: 10.1016/j.automatica.2012.11.029.

show all references

References:
[1]

A. AlessandriM. Baglietto and G. Battistelli, Receding-horizon estimation for switching discrete-time linear systems, IEEE Trans. on Automatic Control, 50 (2005), 1736-1748.  doi: 10.1109/TAC.2005.858684.

[2]

A. AlessandriM. Baglietto and G. Battistelli, Luenberger observers for switching discrete-time linear systems, International Journal of Control, 80 (2007), 1931-1943.  doi: 10.1080/00207170701481683.

[3]

A. Alessandri and F. Boem, State observers for systems subject to bounded disturbances using quadratic boundedness, IEEE Trans. on Automatic Control, to appear.

[4]

F. BlanchiniS. Miani and F. Mesquine, A separation principle for linear switching systems and parametrization of all stabilizing controllers, IEEE Trans. on Automatic Control, 54 (2009), 279-292.  doi: 10.1109/TAC.2008.2010896.

[5]

S. CourtK. Kunisch and L. Pfeiffer, Hybrid optimal control problems for a class of semilinear parabolic equations, Discrete and Continuous Dynamical Systems - Series S, 11 (2018), 1031-1060.  doi: 10.3934/dcdss.2018060.

[6]

M. de OliveiraJ. Bernussou and J. Geromel, A new discrete-time robust stability condition, Systems & Control Letters, 37 (1999), 261-265.  doi: 10.1016/S0167-6911(99)00035-3.

[7]

R. EssickJ.-W. Lee and G. Dullerud, Control of linear switched systems with receding horizon modal information, IEEE Trans. on Automatic Control, 59 (2014), 2340-2352.  doi: 10.1109/TAC.2014.2321251.

[8]

B. GrandvalletA. ZemoucheH. Souley-Ali and M. Boutayeb, New LMI condition for observer-based $H_{\infty}$ stabilization of a class of nonlinear discrete-time systems, SIAM Journal on Control and Optimization, 51 (2013), 784-800.  doi: 10.1137/11085623X.

[9]

R. Guo and L. Song, Optical chaotic secure algorithm based on space laser communication, Discrete and Continuous Dynamical Systems - Series S, 12 (2019), 1355-1369.  doi: 10.3934/dcdss.2019093.

[10]

M. HalimiG. Millerioux and J. Daafouz, Model-based modes detection and discernibility for switched affine discrete-time systems, IEEE Trans. on Automatic Control, 60 (2015), 1501-1514.  doi: 10.1109/TAC.2014.2383012.

[11]

W. HeemelsJ. Daafouz and G. Millerioux, Observer-based control of discrete-time LPV systems with uncertain parameters, IEEE Trans. on Automatic Control, 55 (2010), 2130-2135.  doi: 10.1109/TAC.2010.2051072.

[12]

S. Ibrir, Static output feedback and guaranteed cost control of a class of discrete-time nonlinear systems with partial state measurements, Nonlinear Analysis, 68 (2008), 1784-1792.  doi: 10.1016/j.na.2007.01.011.

[13]

X.-Q. Jiang and L.-C. Zhang, Stock price fluctuation prediction method based on time series analysis, Discrete and Continuous Dynamical Systems - Series S, 12 (2019), 915-927.  doi: 10.3934/dcdss.2019061.

[14]

H. KheloufiF. BedouheneA. Zemouche and A. Alessandri, Observer-based stabilisation of linear systems with parameter uncertainties by using enhanced LMI conditions, Int. Journal of Control, 88 (2015), 1189-1200.  doi: 10.1080/00207179.2014.999258.

[15]

J. Li and Y. Liu, Stabilization of a class of discrete-time switched systems via observer-based output feedback, Journal of Control Theory and Applications, 5 (2007), 307-311.  doi: 10.1007/s11768-006-6064-5.

[16]

Z. LiC. Wen and Y. Soh, Observer-based stabilization of switching linear systems, Automatica, 39 (2003), 517-524.  doi: 10.1016/S0005-1098(02)00267-4.

[17]

W. Lv and S. Ji, Atmospheric environmental quality assessment method based on analytic hierarchy process, Discrete and Continuous Dynamical Systems - Series S, 12 (2019), 941-955.  doi: 10.3934/dcdss.2019063.

[18]

Y. QiuW. Chen and Q. Nie, A hybrid method for stiff reaction-diffusion equations, Discrete and Continuous Dynamical Systems - Series B, 24 (2019), 6387-6417.  doi: 10.3934/dcdsb.2019144.

[19]

R. Rajamani, W. Jeon, H. Movahedi and A. Zemouche, On the need for switched-gain observers for non-monotonic nonlinear systems, Automatica J. IFAC, 114 (2020), 108814, 12 pp. doi: 10.1016/j.automatica.2020.108814.

[20]

Z. Song and J. Zhao, Observer-based robust $H_{\infty}$ control for uncertain switched systems, Journal of Control Theory and Applications, 5 (2007), 278-284.  doi: 10.1007/s11768-006-6053-8.

[21]

W. XiangJ. Xiao and M. Iqbal, Robust observer design for nonlinear uncertain switched systems under asynchronous switching, Nonlinear Analysis: Hybrid Systems, 6 (2012), 754-773.  doi: 10.1016/j.nahs.2011.08.001.

[22]

A. Zemouche and M. Boutayeb, On LMI conditions to design observers for Lipschitz nonlinear systems, Automatica, 49 (2013), 585-591.  doi: 10.1016/j.automatica.2012.11.029.

Figure 1.  Output feedback observer-based control scheme
Figure 2.  State space piecewise regions
Figure 3.  Finite state machine of the discrete state dynamics and tree of mode combinations over successive time instants
Figure 4.  Case Study 1: state variables and their estimates
Figure 5.  Case Study 2: state variables and their estimates
Figure 6.  Case Study 3: state variables and their estimates
Figure 7.  Case Study 3: switching signal and its estimate
[1]

Gonzalo Robledo. Feedback stabilization for a chemostat with delayed output. Mathematical Biosciences & Engineering, 2009, 6 (3) : 629-647. doi: 10.3934/mbe.2009.6.629

[2]

Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1447-1464. doi: 10.3934/dcdss.2020375

[3]

Lorena Bociu, Steven Derochers, Daniel Toundykov. Feedback stabilization of a linear hydro-elastic system. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1107-1132. doi: 10.3934/dcdsb.2018144

[4]

Ruth F. Curtain, George Weiss. Strong stabilization of (almost) impedance passive systems by static output feedback. Mathematical Control and Related Fields, 2019, 9 (4) : 643-671. doi: 10.3934/mcrf.2019045

[5]

Magdi S. Mahmoud. Output feedback overlapping control design of interconnected systems with input saturation. Numerical Algebra, Control and Optimization, 2016, 6 (2) : 127-151. doi: 10.3934/naco.2016004

[6]

Ahmadreza Argha, Steven W. Su, Lin Ye, Branko G. Celler. Optimal sparse output feedback for networked systems with parametric uncertainties. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 283-295. doi: 10.3934/naco.2019019

[7]

Jian Chen, Tao Zhang, Ziye Zhang, Chong Lin, Bing Chen. Stability and output feedback control for singular Markovian jump delayed systems. Mathematical Control and Related Fields, 2018, 8 (2) : 475-490. doi: 10.3934/mcrf.2018019

[8]

Alexei Pokrovskii, Dmitrii Rachinskii. Effect of positive feedback on Devil's staircase input-output relationship. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1095-1112. doi: 10.3934/dcdss.2013.6.1095

[9]

Martin Gugat, Mario Sigalotti. Stars of vibrating strings: Switching boundary feedback stabilization. Networks and Heterogeneous Media, 2010, 5 (2) : 299-314. doi: 10.3934/nhm.2010.5.299

[10]

Daniel Franco, Chris Guiver, Phoebe Smith, Stuart Townley. A switching feedback control approach for persistence of managed resources. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1765-1787. doi: 10.3934/dcdsb.2021109

[11]

Harry L. Johnson, David Russell. Transfer function approach to output specification in certain linear distributed parameter systems. Conference Publications, 2003, 2003 (Special) : 449-458. doi: 10.3934/proc.2003.2003.449

[12]

James P. Nelson, Mark J. Balas. Direct model reference adaptive control of linear systems with input/output delays. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 445-462. doi: 10.3934/naco.2013.3.445

[13]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2415-2433. doi: 10.3934/jimo.2021074

[14]

N. U. Ahmed. Existence of optimal output feedback control law for a class of uncertain infinite dimensional stochastic systems: A direct approach. Evolution Equations and Control Theory, 2012, 1 (2) : 235-250. doi: 10.3934/eect.2012.1.235

[15]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial and Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[16]

Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489

[17]

Shulin Qin, Gengsheng Wang, Huaiqiang Yu. On switching properties of time optimal controls for linear ODEs. Mathematical Control and Related Fields, 2021, 11 (2) : 329-351. doi: 10.3934/mcrf.2020039

[18]

Yong He. Switching controls for linear stochastic differential systems. Mathematical Control and Related Fields, 2020, 10 (2) : 443-454. doi: 10.3934/mcrf.2020005

[19]

Quoc T. Luu, Paul DuChateau. The relative biologic effectiveness versus linear energy transfer curve as an output-input relation for linear cellular systems. Mathematical Biosciences & Engineering, 2009, 6 (3) : 591-602. doi: 10.3934/mbe.2009.6.591

[20]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (365)
  • HTML views (333)
  • Cited by (0)

[Back to Top]