
-
Previous Article
Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems
- DCDS-S Home
- This Issue
-
Next Article
3D image segmentation supported by a point cloud
Computational optimization in solving the geodetic boundary value problems
Slovak University of Technology in Bratislava, Faculty of Civil Engineering, Department of Mathematics and Descriptive Geometry, Radlinskeho 11, Bratislava 810 05, Slovakia |
The finite volume method (FVM) as a numerical method can be straightforwardly applied for global as well as local gravity field modelling. However, to obtain precise numerical solutions it requires very refined discretization which leads to large-scale parallel computations. To optimize such computations, we present a special class of numerical techniques that are based on a physical decomposition of the computational domain. The domain decomposition (DD) methods like the Additive Schwarz Method are very efficient methods for solving partial differential equations. We briefly present their mathematical formulations, and we test their efficiency in numerical experiments dealing with gravity field modelling. Since there is no need to solve special interface problems between neighbouring subdomains, in our applications we use the overlapping DD methods. Finally, we present the numerical experiment using the FVM approach with 93 312 000 000 unknowns that would not be possible to perform using available computing facilities without aforementioned methods that can efficiently reduce a numerical complexity of the problem.
References:
[1] |
O. B. Andersen, The DTU10 Gravity field and Mean sea surface, Second International Symposium of the Gravity Field of the Earth (IGFS2), Fairbanks, Alaska, (2010). Google Scholar |
[2] |
Y. Aoyama and J. Nakano, RS/6000 SP: Practical MPI programming, IBM., (1999), http://www.redbooks.ibm.com. Google Scholar |
[3] |
X. Cai, Overlapping domain decomposition methods, Advanced Topics in Computational Partial Differential Equations, (2003), 57–95.
doi: 10.1007/978-3-642-18237-2_2. |
[4] |
T. F. Chan and T. P. Mathew,
Domain decomposition algorithms, Acta Numerica, 3 (1994), 61-143.
doi: 10.1017/S0962492900002427. |
[5] |
B. Chapman, G. Jost and R. Pas, Using OpenMP: Portable shared memory parallel programming, The MIT Press, Scientific and Engin Edition, (2007). Google Scholar |
[6] |
R. Čunderlík, K. Mikula and M. Mojzeš, Numerical solution of the linearized fixed gravimetric boundary-value problem, Journal of Geodesy, 82 (2008), 15-29. Google Scholar |
[7] |
R. Čunderlík and K. Mikula, Direct BEM for high-resolution global gravity field modelling, Studia Geophysica et Geodaetica, 54 (2010), 219-238. Google Scholar |
[8] |
V. Dolean, P. Jolvet and F. Nataf, An Introduction to Domain Decomposition Methods. Algorithms, Theory, and Parallel Implementation, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2015.
doi: 10.1137/1.9781611974065.ch1. |
[9] |
Z. Fašková, R. Čunderlík and K. Mikula, Finite element method for solving geodetic boundary value problems, Journal of Geodesy, 84 (2010), 135-144. Google Scholar |
[10] |
P. Holota,
Coerciveness of the linear gravimetric boundary-value problem and a geometrical interpretation, Journal of Geodesy, 71 (1997), 640-651.
doi: 10.1007/s001900050131. |
[11] |
P. Holota, Neumann's boundary-value problem in studies on Earth gravity field: Weak solution, 50 years of Research Institute of Geodesy, Topography and Cartography, 50 (2005), 49-69. Google Scholar |
[12] |
W. Keller, Finite differences schemes for elliptic boundary value problems, Bulletin IAEG, 1 (1995), Section IV. Google Scholar |
[13] |
R. Klees, Loesung des Fixen Geodaetischen Randwertprolems mit Hilfe der Randelementmethode, Ph.D thesis, Muenchen, 1992 Google Scholar |
[14] |
R. Klees, M. van Gelderen, C. Lage and C. Schwab,
Fast numerical solution of the linearized Molodensky problem, Journal of Geodesy, 75 (2001), 349-362.
doi: 10.1007/s001900100183. |
[15] |
K. R. Koch and A. J. Pope,
Uniqueness and existence for the geodetic boundary value problem using the known surface of the earth, Bulletin Géodésique (N.S.), 46 (1972), 467-476.
|
[16] |
T. Mayer-Gürr and et al., The new combined satellite only model GOCO03s, International Symposium on Gravity, Geoid and Height Systems GGHS 2012, (2012). Google Scholar |
[17] |
P. Meissl, The Use of Finite Elements in Physical Geodesy, Geodetic Science and Surveying, Report 313, The Ohio State University, 1981. Google Scholar |
[18] |
Z. Minarechová, M. Macák, R. Čunderlík and K. Mikula, High-resolution global gravity field modelling by the finite volume method, Studia Geophysica et Geodaetica, 59 (2015), 1-20. Google Scholar |
[19] |
O. Nesvadba, P. Holota and R. Klees, A direct method and its numerical interpretation in the determination of the gravity field of the Earth from terrestrial data, Proceedings Dynamic Planet 2005, Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools, 130 (2007), 370-376. Google Scholar |
[20] |
N. K. Pavlis, S. A. Holmes, S. C. Kenyon and J. K. Factor,
The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), Journal of Geophysical Research: Solid Earth, 117 (2012), 1-38.
doi: 10.1029/2011JB008916. |
[21] |
B. Shaofeng and B. Dingbo, The finite element method for the geodetic boundary value problem, Manuscripta Geodetica, 16 (1991), 353-359. Google Scholar |
[22] |
G. L. G. Sleijpen and D. R. Fokkema,
BiCGstab$(l)$ for linear equations involving unsymmetric matrices with complex spectrum, Electron. Trans. Numer. Anal., 1 (1993), 11-32.
|
[23] |
M. Šprlák, Z. Fašková and K. Mikula, On the application of the coupled finite-infinite element method to geodetic boundary-value problem, Studia Geophysica et Geodaetica, 55 (2011), 479-487. Google Scholar |
show all references
References:
[1] |
O. B. Andersen, The DTU10 Gravity field and Mean sea surface, Second International Symposium of the Gravity Field of the Earth (IGFS2), Fairbanks, Alaska, (2010). Google Scholar |
[2] |
Y. Aoyama and J. Nakano, RS/6000 SP: Practical MPI programming, IBM., (1999), http://www.redbooks.ibm.com. Google Scholar |
[3] |
X. Cai, Overlapping domain decomposition methods, Advanced Topics in Computational Partial Differential Equations, (2003), 57–95.
doi: 10.1007/978-3-642-18237-2_2. |
[4] |
T. F. Chan and T. P. Mathew,
Domain decomposition algorithms, Acta Numerica, 3 (1994), 61-143.
doi: 10.1017/S0962492900002427. |
[5] |
B. Chapman, G. Jost and R. Pas, Using OpenMP: Portable shared memory parallel programming, The MIT Press, Scientific and Engin Edition, (2007). Google Scholar |
[6] |
R. Čunderlík, K. Mikula and M. Mojzeš, Numerical solution of the linearized fixed gravimetric boundary-value problem, Journal of Geodesy, 82 (2008), 15-29. Google Scholar |
[7] |
R. Čunderlík and K. Mikula, Direct BEM for high-resolution global gravity field modelling, Studia Geophysica et Geodaetica, 54 (2010), 219-238. Google Scholar |
[8] |
V. Dolean, P. Jolvet and F. Nataf, An Introduction to Domain Decomposition Methods. Algorithms, Theory, and Parallel Implementation, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2015.
doi: 10.1137/1.9781611974065.ch1. |
[9] |
Z. Fašková, R. Čunderlík and K. Mikula, Finite element method for solving geodetic boundary value problems, Journal of Geodesy, 84 (2010), 135-144. Google Scholar |
[10] |
P. Holota,
Coerciveness of the linear gravimetric boundary-value problem and a geometrical interpretation, Journal of Geodesy, 71 (1997), 640-651.
doi: 10.1007/s001900050131. |
[11] |
P. Holota, Neumann's boundary-value problem in studies on Earth gravity field: Weak solution, 50 years of Research Institute of Geodesy, Topography and Cartography, 50 (2005), 49-69. Google Scholar |
[12] |
W. Keller, Finite differences schemes for elliptic boundary value problems, Bulletin IAEG, 1 (1995), Section IV. Google Scholar |
[13] |
R. Klees, Loesung des Fixen Geodaetischen Randwertprolems mit Hilfe der Randelementmethode, Ph.D thesis, Muenchen, 1992 Google Scholar |
[14] |
R. Klees, M. van Gelderen, C. Lage and C. Schwab,
Fast numerical solution of the linearized Molodensky problem, Journal of Geodesy, 75 (2001), 349-362.
doi: 10.1007/s001900100183. |
[15] |
K. R. Koch and A. J. Pope,
Uniqueness and existence for the geodetic boundary value problem using the known surface of the earth, Bulletin Géodésique (N.S.), 46 (1972), 467-476.
|
[16] |
T. Mayer-Gürr and et al., The new combined satellite only model GOCO03s, International Symposium on Gravity, Geoid and Height Systems GGHS 2012, (2012). Google Scholar |
[17] |
P. Meissl, The Use of Finite Elements in Physical Geodesy, Geodetic Science and Surveying, Report 313, The Ohio State University, 1981. Google Scholar |
[18] |
Z. Minarechová, M. Macák, R. Čunderlík and K. Mikula, High-resolution global gravity field modelling by the finite volume method, Studia Geophysica et Geodaetica, 59 (2015), 1-20. Google Scholar |
[19] |
O. Nesvadba, P. Holota and R. Klees, A direct method and its numerical interpretation in the determination of the gravity field of the Earth from terrestrial data, Proceedings Dynamic Planet 2005, Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools, 130 (2007), 370-376. Google Scholar |
[20] |
N. K. Pavlis, S. A. Holmes, S. C. Kenyon and J. K. Factor,
The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), Journal of Geophysical Research: Solid Earth, 117 (2012), 1-38.
doi: 10.1029/2011JB008916. |
[21] |
B. Shaofeng and B. Dingbo, The finite element method for the geodetic boundary value problem, Manuscripta Geodetica, 16 (1991), 353-359. Google Scholar |
[22] |
G. L. G. Sleijpen and D. R. Fokkema,
BiCGstab$(l)$ for linear equations involving unsymmetric matrices with complex spectrum, Electron. Trans. Numer. Anal., 1 (1993), 11-32.
|
[23] |
M. Šprlák, Z. Fašková and K. Mikula, On the application of the coupled finite-infinite element method to geodetic boundary-value problem, Studia Geophysica et Geodaetica, 55 (2011), 479-487. Google Scholar |



Solver | CPU time | Number of |
[s] | iterations | |
GS | 703 | 10000 |
SOR | 92 | 1136 |
BiCG | 68 | 568 |
Bi-CGSTAB | 41 | 348 |
Solver | CPU time | Number of |
[s] | iterations | |
GS | 703 | 10000 |
SOR | 92 | 1136 |
BiCG | 68 | 568 |
Bi-CGSTAB | 41 | 348 |
Solver | Number of | CPU time | Additional memory |
iterations | [s] | for solver [MB] | |
Bi-CGSTAB | 1053 | 403.82 | 184.26 |
BiCGstab(2) | 554 | 494.14 | 258.02 |
BiCGstab(4) | 272 | 629.01 | 405.46 |
BiCGstab(8) | 130 | 860.86 | 700.34 |
Solver | Number of | CPU time | Additional memory |
iterations | [s] | for solver [MB] | |
Bi-CGSTAB | 1053 | 403.82 | 184.26 |
BiCGstab(2) | 554 | 494.14 | 258.02 |
BiCGstab(4) | 272 | 629.01 | 405.46 |
BiCGstab(8) | 130 | 860.86 | 700.34 |
MPI | OpenMP | CPU time | Speedup | RAM | Memory |
Processes | Threads | [s] | ratio | [MB] | increase |
1 | 1 | 403.82 | - | 237.108 | - |
2 | 232.40 | 1.73 | |||
4 | 191.36 | 2.11 | |||
8 | 87.31 | 4.63 | |||
16 | 57.51 | 7.02 | |||
2 | 1 | 216.84 | 1.86 | 245.868 | +3.7% |
2 | 126.17 | 3.20 | |||
4 | 98.46 | 4.10 | |||
8 | 85.88 | 4.70 | |||
4 | 1 | 114.01 | 3.54 | 266.040 | +12.2% |
2 | 79.72 | 5.06 | |||
4 | 55.56 | 7.26 | |||
8 | 1 | 79.34 | 5.09 | 308.456 | +30.0% |
2 | 70.81 | 5.70 | |||
16 | 1 | 59.51 | 6.78 | 390.068 | +64.5% |
MPI | OpenMP | CPU time | Speedup | RAM | Memory |
Processes | Threads | [s] | ratio | [MB] | increase |
1 | 1 | 403.82 | - | 237.108 | - |
2 | 232.40 | 1.73 | |||
4 | 191.36 | 2.11 | |||
8 | 87.31 | 4.63 | |||
16 | 57.51 | 7.02 | |||
2 | 1 | 216.84 | 1.86 | 245.868 | +3.7% |
2 | 126.17 | 3.20 | |||
4 | 98.46 | 4.10 | |||
8 | 85.88 | 4.70 | |||
4 | 1 | 114.01 | 3.54 | 266.040 | +12.2% |
2 | 79.72 | 5.06 | |||
4 | 55.56 | 7.26 | |||
8 | 1 | 79.34 | 5.09 | 308.456 | +30.0% |
2 | 70.81 | 5.70 | |||
16 | 1 | 59.51 | 6.78 | 390.068 | +64.5% |
Number of | CPU time | Speedup | RAM | Memory |
subdomains | [s] | ratio | [MB] | saving |
1 | 403.82 | - | 237.108 | - |
5 | 1651.68 | 0.24 | 89.868 | -62.1% |
10 | 907.99 | 0.44 | 71.308 | -69.9% |
15 | 856.04 | 0.46 | 65.248 | -72.5% |
30 | 854.24 | 0.47 | 57.816 | -75.6% |
Number of | CPU time | Speedup | RAM | Memory |
subdomains | [s] | ratio | [MB] | saving |
1 | 403.82 | - | 237.108 | - |
5 | 1651.68 | 0.24 | 89.868 | -62.1% |
10 | 907.99 | 0.44 | 71.308 | -69.9% |
15 | 856.04 | 0.46 | 65.248 | -72.5% |
30 | 854.24 | 0.47 | 57.816 | -75.6% |
CPU time | Speedup | |
[s] | ratio | |
1 | 854.24 | - |
5 | 308.02 | 2.77 |
10 | 252.33 | 3.38 |
15 | 224.65 | 3.80 |
20 | 236.56 | 3.61 |
25 | 265.73 | 3.21 |
CPU time | Speedup | |
[s] | ratio | |
1 | 854.24 | - |
5 | 308.02 | 2.77 |
10 | 252.33 | 3.38 |
15 | 224.65 | 3.80 |
20 | 236.56 | 3.61 |
25 | 265.73 | 3.21 |
Number of | CPU time | Speedup | RAM | Memory |
subdomains | [s] | ratio | [MB] | saving |
1 | 55.56 | - | 266.040 | - |
5 | 55.52 | 1.00 | 115.508 | -56.6% |
10 | 28.47 | 1.95 | 97.568 | -63.3% |
15 | 17.44 | 3.18 | 91.156 | -65.7% |
30 | 18.67 | 2.97 | 84.128 | -68.3% |
Number of | CPU time | Speedup | RAM | Memory |
subdomains | [s] | ratio | [MB] | saving |
1 | 55.56 | - | 266.040 | - |
5 | 55.52 | 1.00 | 115.508 | -56.6% |
10 | 28.47 | 1.95 | 97.568 | -63.3% |
15 | 17.44 | 3.18 | 91.156 | -65.7% |
30 | 18.67 | 2.97 | 84.128 | -68.3% |
Computation | CPU time | Speedup | RAM | Memory |
strategies | [s] | ratio | [MB] | saving |
Serial without DD | 403.82 | - | 237.108 | - |
Serial with DD | 224.65 | 1.79 | 57.816 | -75.6% |
Parallel without DD | 55.56 | 7.26 | 266.040 | +10.8% |
Parallel with DD | 18.67 | 21.6 | 84.128 | -64.5% |
Computation | CPU time | Speedup | RAM | Memory |
strategies | [s] | ratio | [MB] | saving |
Serial without DD | 403.82 | - | 237.108 | - |
Serial with DD | 224.65 | 1.79 | 57.816 | -75.6% |
Parallel without DD | 55.56 | 7.26 | 266.040 | +10.8% |
Parallel with DD | 18.67 | 21.6 | 84.128 | -64.5% |
No. sub. | CPU time | CPU time | RAM | Memory |
domains | [s] | saving | [GB] | saving |
1 | 706.8 | - | 1 652 | - |
2 | 683.6 | 1.03 | 968 | -41.4% |
5 | 703.5 | 1.00 | 557 | -66.3% |
10 | 700.9 | 1.01 | 420 | -74.5% |
15 | 710.0 | 0.99 | 375 | -77.3% |
30 | 718.5 | 0.98 | 329 | -80.0% |
No. sub. | CPU time | CPU time | RAM | Memory |
domains | [s] | saving | [GB] | saving |
1 | 706.8 | - | 1 652 | - |
2 | 683.6 | 1.03 | 968 | -41.4% |
5 | 703.5 | 1.00 | 557 | -66.3% |
10 | 700.9 | 1.01 | 420 | -74.5% |
15 | 710.0 | 0.99 | 375 | -77.3% |
30 | 718.5 | 0.98 | 329 | -80.0% |
[1] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[2] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[3] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[4] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
[5] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[6] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[7] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[8] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[9] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[10] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[11] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[12] |
Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045 |
[13] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453 |
[14] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[15] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[16] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
[17] |
Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263 |
[18] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[19] |
Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149 |
[20] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]