[1]
|
O. Bernus and E. Vigmond, Asymptotic wave propagation in excitable media, Phys. Rev. E, 92 (2015), 010901.
doi: 10.1103/PhysRevE.92.010901.
|
[2]
|
Y.-Y. Chen, H. Ninomiya and R. Taguchi, Travelling spots in multidimensional excitable media, Journal of Elliptic and Parabolic Equations, 1 (2015), 281-305.
doi: 10.1007/BF03377382.
|
[3]
|
P. Colli Franzone, L. F. Pavarino and S. Scacchi, Mathematical Cardiac Electrophysiology, MS & A. Modeling, Simulation and Applications, 13. Springer, Cham, 2014.
doi: 10.1007/978-3-319-04801-7.
|
[4]
|
P. Colli-Franzone, V. Gionti, S. Scacchi and C. Storti, Role of infarct scar dimensions, border zone repolarization properties and anisotropy in the origin and maintenance of cardiac reentry, Mathematical Biosciences, 315 (2019), 108-128.
doi: 10.1016/j.mbs.2019.108228.
|
[5]
|
E. N. Cytrynbaum, V. MacKay, O. Nahman-Lévesque, M. Dobbs, G. Bub, A. Shrier and L. Glass, Double-wave reentry in excitable media, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (2019), 073103, 12 pp.
doi: 10.1063/1.5092982.
|
[6]
|
K. Deckelnick, G. Dziuk and C. M. Elliot, Computation of geometric partial differential equations and mean curvature flow, Acta Numerica, 14 (2005), 139-232.
doi: 10.1017/S0962492904000224.
|
[7]
|
A. J. Durston, Dictyostelium discoideum aggregation fields as excitable media, J. Theor. Biol., 42 (1973), 483-504.
doi: 10.1016/0022-5193(73)90242-7.
|
[8]
|
J. Engelbrecht, T. Peets, K. Tamm, M. Laasmaa and M. Vendelin, On the complexity of signal propagation in nerve fibres, Proceedings of the Estonian Academy of Sciences, 67 (2018), 28-38.
doi: 10.3176/proc.2017.4.28.
|
[9]
|
R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysical Journal, 1 (1961), 445-466.
doi: 10.1016/S0006-3495(61)86902-6.
|
[10]
|
M. A. C. Guyton, Textbook of Medical Physiology, W. B. Saunders Company, 1991.
|
[11]
|
M. Kolář, Computational studies of reaction-diffusion systems by nonlinear galerkin method, American Journal of Computational Mathematics, 3 (2013), 137-146.
|
[12]
|
O. A. Ladyženskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Izdat. "Nauka'', Moscow, 1967,736 pp.
|
[13]
|
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co. Pte. Ltd., Singapore, 1996.
doi: 10.1142/3302.
|
[14]
|
J. L. Lions, Quelques Méthodes aux Rśolution des Problémes Nonlinéaires, Dunod Gauthiers-Villars, Paris, 1969.
|
[15]
|
J. Ma, F. Q. Wu, T. Hayat, P. Zhou and J. Tang, Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media, Physica A: Statistical Mechanics and its Applications, 486 (2017), 508-516.
doi: 10.1016/j.physa.2017.05.075.
|
[16]
|
J. Mach, M. Beneš and P. Strachota, Nonlinear Galerkin finite element method applied to the system of reaction-diffusion equations in one space dimension, Comput. Math. Appl., 73 (2017), 2053-2065.
doi: 10.1016/j.camwa.2017.02.032.
|
[17]
|
J. D. Murray, Mathematical Biology, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002.
|
[18]
|
J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proceedings of IRE, 50 (1962), 2061-2070.
doi: 10.1109/JRPROC.1962.288235.
|
[19]
|
A. Yu. Palyanov and A. S. Ratushnyak, Some details of signal propagation in the nervous system of C. elegans, Russian Journal of Genetics: Applied Research, 5 (2015), 642-649.
doi: 10.1134/S2079059715060064.
|
[20]
|
O. Pártl, Reaction-Diffusion Systems in Mathematical Biology, Diploma Thesis, Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague, Prague, 2012.
|
[21]
|
Pathwaymedicine.org, Cardiac Action Potential - Cellular Basis, http://www.pathwaymedicine.org/Cardiac-Action-Potential-Cellular-Basis, [cited: April 10, 2018].
|
[22]
|
L. S. Pontryagin, Ordinary Differential Equations, Second, revised edition Izdat. "Nauka'', Moscow, 1965,331 pp.
|
[23]
|
J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren der Mathematischen Wissenschaften, 258. Springer-Verlag, New York-Berlin, 1983.
|
[24]
|
J. Šembera and M. Beneš, Nonlinear Galerkin method for reaction-diffusion systems admitting invariant regions, Journal of Computational and Applied Mathematics, 136 (2001), 163-176.
doi: 10.1016/S0377-0427(00)00582-3.
|
[25]
|
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Science, 68. Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4684-0313-8.
|
[26]
|
N. A. Trayanova and K. C. Chang, How computer simulations of the human heart can improve anti-arrhythmia therapy, The Journal of Physiology, 594 (2016), 2483-2502.
doi: 10.1113/JP270532.
|
[27]
|
K. H. W. J. Ten Tusscher and A. V. Panfilov, Wave propagation in excitable media with randomly distributed obstacles, Multiscale Model. Simul., 3 (2005), 265-282.
doi: 10.1137/030602654.
|
[28]
|
E. Ullner, A. Zaikin, J. García-Ojalvo, R. Báscones and J. Kurths, Vibrational resonance and vibrational propagation in excitable systems, Physics Letters A, 312 (2003), 348-354.
doi: 10.1016/S0375-9601(03)00681-9.
|
[29]
|
H. Wang, J. Wang, X. Y. Thow and Ch. Lee, The First Principle of Neural Circuit and the General Circuit–Probability Theory, submitted, 2018, arXiv: 1805.00605.
|
[30]
|
J. P. T. Ward and R. W. A. Linden, The Basics of Physiology, (in Czech), Galén, 2010.
|
[31]
|
L. D. Weise and A. V. Panfilov, Emergence of spiral wave activity in a mechanically heterogeneous reaction-diffusion-mechanics system, Physical Review Letters, 108 (2012), 228104.
doi: 10.1103/PhysRevLett.108.228104.
|
[32]
|
D. P. Zipes and J. Jalife, Cardiac Electrophysiology, Saunders Elsevier, Philadelphia, 1995.
|
[33]
|
V. S. Zykov, Spiral wave initiation in excitable media, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376 (2018).
doi: 10.1098/rsta.2017.0379.
|
[34]
|
V. S. Zykov, A. S. Mikhailov and S. C. Müller, Wave propagation in excitable media with fast inhibitor diffusion, Lecture Notes in Physics, 532 (2007), 308-325.
doi: 10.1007/BFb0104233.
|
[35]
|
V. S. Zykov and E. Bodenschatz, Wave propagation in inhomogeneous excitable media, Annual Review of Condensed Matter Physics, 9 (2018), 435-461.
|