
-
Previous Article
Numerical and mathematical analysis of blow-up problems for a stochastic differential equation
- DCDS-S Home
- This Issue
-
Next Article
A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies
Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow
1. | Department of Mathematical Sciences, Shibaura Institute of Technology, Fukasaku 309, Minuma-ku, Saitama 337-8570, Japan |
2. | Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, Aramaki-machi 4-2, Maebashi, 371-8510 Gunma, Japan |
In this paper, the evolution of a polygonal spiral curve by the crystalline curvature flow with a pinned center is considered from two viewpoints; a discrete model consisting of an ODE system describing facet lengths and another using level set method. We investigate the difference of these models numerically by calculating the area of an interposed region by their spiral curves. The area difference is calculated by the normalized $ L^1 $ norm of the difference of step-like functions which are branches of $ \arg (x) $ whose discontinuities are on the spirals. We find that the differences in the numerical results are small, even though the model equations around the center and the farthest facet are slightly different.
References:
[1] |
F. Almgren and J. E. Taylor,
Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Differential Geom., 42 (1995), 1-22.
doi: 10.4310/jdg/1214457030. |
[2] |
F. Almgren, J. E. Taylor and L. Wang,
Curvature-driven flows: A variational approach, SIAM J. Control Optim., 31 (1993), 387-438.
doi: 10.1137/0331020. |
[3] |
S. Angenent and M. E. Gurtin,
Multiphase thermomechanics with interfacial structure. Ⅱ. Evolution of an isothermal interface, Arch. Rational Mech. Anal., 108 (1989), 323-391.
doi: 10.1007/BF01041068. |
[4] |
G. Bellettini and M. Paolini,
Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J., 25 (1996), 537-566.
doi: 10.14492/hokmj/1351516749. |
[5] |
A. Chambolle,
An algorithm for mean curvature motion, Interfaces Free Bound., 6 (2004), 195-218.
doi: 10.4171/IFB/97. |
[6] |
A. Chambolle, M. Morini, M. Novaga and M. Ponsiglione,
Existence and uniqueness for anisotropic and crystalline mean curvature flows, J. Amer. Math. Soc., 32 (2019), 779-824.
doi: 10.1090/jams/919. |
[7] |
A. Chambolle, M. Morini and M. Ponsiglione,
Existence and uniqueness for a crystalline mean curvature flow, Comm. Pure Appl. Math., 70 (2017), 1084-1114.
doi: 10.1002/cpa.21668. |
[8] |
B. Engquist, A.-K. Tornberg and R. Tsai,
Discretization of Dirac delta functions in level set methods, J. Comput. Phys., 207 (2005), 28-51.
doi: 10.1016/j.jcp.2004.09.018. |
[9] |
M.-H. Giga and Y. Giga,
Generalized motion by nonlocal curvature in the plane, Arch. Ration. Mech. Anal., 159 (2001), 295-333.
doi: 10.1007/s002050100154. |
[10] |
Y. Giga, Surface Evolution Equations: A Level Set Approach, Monographs in Mathematics, 99. Birkhäuser Verlag, Basel, 2006. |
[11] |
Y. Giga and N. Požár, A level set crystalline mean curvature flow of surfaces, Adv. Differential Equations, 21 (2016), 631–698, http://projecteuclid.org/euclid.ade/1462298654. |
[12] |
S. Goto, M. Nakagawa and T. Ohtsuka,
Uniqueness and existence of generalized motion for spiral crystal growth, Indiana University Mathematics Journal, 57 (2008), 2571-2599.
doi: 10.1512/iumj.2008.57.3350. |
[13] |
M. E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. |
[14] |
T. Ishiwata,
Crystalline motion of spiral-shaped polygonal curves with a tip motion, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 53-62.
doi: 10.3934/dcdss.2014.7.53. |
[15] |
T. Ishiwata and T. Ohtsuka,
Evolution of spiral-shaped polygonal curve by crystalline curvature flow with a pinned tip, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5261-5295.
doi: 10.3934/dcdsb.2019058. |
[16] |
A. Oberman, S. Osher, R. Takei and R. Tsai,
Numerical methods for anisotropic mean curvature flow based on a discrete time variational formulation, Commun. Math. Sci., 9 (2011), 637-662.
doi: 10.4310/CMS.2011.v9.n3.a1. |
[17] |
T. Ohtsuka, Y.-H. R. Tsai and Y. Giga,
A level set approach reflecting sheet structure with single auxiliary function for evolving spirals on crystal surfaces, Journal of Scientific Computing, 62 (2015), 831-874.
doi: 10.1007/s10915-014-9877-2. |
[18] |
T. Ohtsuka,
A level set method for spiral crystal growth, Advances in Mathematical Sciences and Applications, 13 (2003), 225-248.
|
[19] |
T. Ohtsuka, Minimizing movement approach for spirals evolving by crystalline curvature using level set functions, Oberwolfach Reports, 14 (2017), 314-317. Google Scholar |
[20] |
T. Ohtsuka, Minimizing movement approach without using distance function for evolving spirals by the crystalline curvature with driving force, RIMS Kôkyûroku No.2121, 74–87, http://www.kurims.kyoto-u.ac.jp/ kyodo/kokyuroku/contents/pdf/2121-06.pdf. Google Scholar |
[21] |
T. Ohtsuka, Y.-H. R. Tsai and Y. Giga,
Growth rate of crystal surfaces with several dislocation centers, Crystal Growth & Design, 18 (2018), 1917-1929.
doi: 10.1021/acs.cgd.7b00833. |
[22] |
R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. |
[23] |
J. E. Taylor,
Constructions and conjectures in crystalline nondifferential geometry, Differential Geometry, Pitman Monogr. Surveys Pure Appl. Math., Longman Sci. Tech., Harlow, 52 (1991), 321-336.
|
show all references
References:
[1] |
F. Almgren and J. E. Taylor,
Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Differential Geom., 42 (1995), 1-22.
doi: 10.4310/jdg/1214457030. |
[2] |
F. Almgren, J. E. Taylor and L. Wang,
Curvature-driven flows: A variational approach, SIAM J. Control Optim., 31 (1993), 387-438.
doi: 10.1137/0331020. |
[3] |
S. Angenent and M. E. Gurtin,
Multiphase thermomechanics with interfacial structure. Ⅱ. Evolution of an isothermal interface, Arch. Rational Mech. Anal., 108 (1989), 323-391.
doi: 10.1007/BF01041068. |
[4] |
G. Bellettini and M. Paolini,
Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J., 25 (1996), 537-566.
doi: 10.14492/hokmj/1351516749. |
[5] |
A. Chambolle,
An algorithm for mean curvature motion, Interfaces Free Bound., 6 (2004), 195-218.
doi: 10.4171/IFB/97. |
[6] |
A. Chambolle, M. Morini, M. Novaga and M. Ponsiglione,
Existence and uniqueness for anisotropic and crystalline mean curvature flows, J. Amer. Math. Soc., 32 (2019), 779-824.
doi: 10.1090/jams/919. |
[7] |
A. Chambolle, M. Morini and M. Ponsiglione,
Existence and uniqueness for a crystalline mean curvature flow, Comm. Pure Appl. Math., 70 (2017), 1084-1114.
doi: 10.1002/cpa.21668. |
[8] |
B. Engquist, A.-K. Tornberg and R. Tsai,
Discretization of Dirac delta functions in level set methods, J. Comput. Phys., 207 (2005), 28-51.
doi: 10.1016/j.jcp.2004.09.018. |
[9] |
M.-H. Giga and Y. Giga,
Generalized motion by nonlocal curvature in the plane, Arch. Ration. Mech. Anal., 159 (2001), 295-333.
doi: 10.1007/s002050100154. |
[10] |
Y. Giga, Surface Evolution Equations: A Level Set Approach, Monographs in Mathematics, 99. Birkhäuser Verlag, Basel, 2006. |
[11] |
Y. Giga and N. Požár, A level set crystalline mean curvature flow of surfaces, Adv. Differential Equations, 21 (2016), 631–698, http://projecteuclid.org/euclid.ade/1462298654. |
[12] |
S. Goto, M. Nakagawa and T. Ohtsuka,
Uniqueness and existence of generalized motion for spiral crystal growth, Indiana University Mathematics Journal, 57 (2008), 2571-2599.
doi: 10.1512/iumj.2008.57.3350. |
[13] |
M. E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. |
[14] |
T. Ishiwata,
Crystalline motion of spiral-shaped polygonal curves with a tip motion, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 53-62.
doi: 10.3934/dcdss.2014.7.53. |
[15] |
T. Ishiwata and T. Ohtsuka,
Evolution of spiral-shaped polygonal curve by crystalline curvature flow with a pinned tip, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5261-5295.
doi: 10.3934/dcdsb.2019058. |
[16] |
A. Oberman, S. Osher, R. Takei and R. Tsai,
Numerical methods for anisotropic mean curvature flow based on a discrete time variational formulation, Commun. Math. Sci., 9 (2011), 637-662.
doi: 10.4310/CMS.2011.v9.n3.a1. |
[17] |
T. Ohtsuka, Y.-H. R. Tsai and Y. Giga,
A level set approach reflecting sheet structure with single auxiliary function for evolving spirals on crystal surfaces, Journal of Scientific Computing, 62 (2015), 831-874.
doi: 10.1007/s10915-014-9877-2. |
[18] |
T. Ohtsuka,
A level set method for spiral crystal growth, Advances in Mathematical Sciences and Applications, 13 (2003), 225-248.
|
[19] |
T. Ohtsuka, Minimizing movement approach for spirals evolving by crystalline curvature using level set functions, Oberwolfach Reports, 14 (2017), 314-317. Google Scholar |
[20] |
T. Ohtsuka, Minimizing movement approach without using distance function for evolving spirals by the crystalline curvature with driving force, RIMS Kôkyûroku No.2121, 74–87, http://www.kurims.kyoto-u.ac.jp/ kyodo/kokyuroku/contents/pdf/2121-06.pdf. Google Scholar |
[21] |
T. Ohtsuka, Y.-H. R. Tsai and Y. Giga,
Growth rate of crystal surfaces with several dislocation centers, Crystal Growth & Design, 18 (2018), 1917-1929.
doi: 10.1021/acs.cgd.7b00833. |
[22] |
R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. |
[23] |
J. E. Taylor,
Constructions and conjectures in crystalline nondifferential geometry, Differential Geometry, Pitman Monogr. Surveys Pure Appl. Math., Longman Sci. Tech., Harlow, 52 (1991), 321-336.
|









[1] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[2] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[3] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[4] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[5] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[6] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[7] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[8] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[9] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[10] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[11] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[12] |
Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409 |
[13] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[14] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[15] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[16] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[17] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[18] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[19] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[20] |
Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020127 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]