• Previous Article
    Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs
  • DCDS-S Home
  • This Issue
  • Next Article
    An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow
March  2021, 14(3): 1103-1110. doi: 10.3934/dcdss.2020392

Existence of a period two solution of a delay differential equation

Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5258, Japan

Received  January 2019 Revised  February 2020 Published  June 2020

We consider the existence of a symmetric periodic solution for the following distributed delay differential equation
$ x^{\prime}(t) = -f\left(\int_{0}^{1}x(t-s)ds\right), $
where
$ f(x) = r\sin x $
with
$ r>0 $
. It is shown that the well studied second order ordinary differential equation, known as the nonlinear pendulum equation, derives a symmetric periodic solution of period
$ 2 $
, expressed in terms of the Jacobi elliptic functions, for the delay differential equation. We here apply the approach in Kaplan and Yorke (1974) for a differential equation with discrete delay to the distributed delay differential equation.
Citation: Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392
References:
[1]

D. Breda, O. Diekmann, D. Liessi and F. Scarabel, Numerical bifurcation analysis of a class of nonlinear renewal equations, Electron. J. Qual. Theo. Diff. Equ., 2016 (2016), 24 pp. doi: 10.14232/ejqtde.2016.1.65.  Google Scholar

[2]

P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954.  Google Scholar

[3]

O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H. O. Walther, Delay Equations: Functional, Complex and Nonlinear Analysis, Applied Mathematical Sciences, 110. Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4206-2.  Google Scholar

[4]

P. Dormayer and A. F. Ivanov, Symmetric periodic solutions of a delay differential equation, Dynamical Systems and Differential Equations, Discrete Contin. Dynam. Systems, 1 (1998), 220-230.   Google Scholar

[5]

P. Dormayer and A. F. Ivanov, Stability of symmetric periodic solutions with small amplitude of $x^{\prime}(t) = \alpha f(x(t), x(t-1))$, Discrete Contin. Dynam. Systems, 5 (1999), 61-82.  doi: 10.3934/dcds.1999.5.61.  Google Scholar

[6]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[7]

J. L. Kaplan and J. A. Yorke, Ordinary differential equations which yield periodic solutions of differential delay equations, J. Math. Anal. Appl., 48 (1974), 317-324.  doi: 10.1016/0022-247X(74)90162-0.  Google Scholar

[8]

B. B. Kennedy, Symmetric periodic solutions for a class of differential delay equations with distributed delay, Electron. J. Qual. Theo. Diff. Equ., 2014 (2014), 18 pp. doi: 10.14232/ejqtde.2014.1.4.  Google Scholar

[9]

J. B. Li and X. Z. He, Proof and generalization of Kaplan-Yorke's conjecture under the condition $f^{\prime}(0)>0$ on periodic solution of differential delay equations, Sci. China Ser. A., 42 (1999), 957-964.  doi: 10.1007/BF02880387.  Google Scholar

[10]

K. R. Meyer, Jacobi elliptic functions from a dynamical systems point of view, The American Mathematical Monthly, 108 (2001), 729-737.  doi: 10.1080/00029890.2001.11919804.  Google Scholar

[11]

R. E. Mickens, Oscillations in Planar Dynamic Systems, Series on Advances in Mathematics for Applied Sciences, 37. World Scientific Publishing Co., Inc., River Edge, NJ, 1996. doi: 10.1142/2778.  Google Scholar

[12]

Y. Nakata, An explicit periodic solution of a delay differential equation, J. Dyn. Diff. Equ., 32 (2020), 163-179.  doi: 10.1007/s10884-018-9681-z.  Google Scholar

[13]

R. D. Nussbaum, Periodic solutions of some nonlinear autonomous functional differential equations, Ann. Mat. Pura Appl. (4), 101 (1974), 263-306.  doi: 10.1007/BF02417109.  Google Scholar

[14] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Second edition, Westview Press, Boulder, CO, 2015.   Google Scholar
[15]

H.-O. Walther, Topics in delay differential equations, Jahresbericht Der Deutschen Mathematiker-Vereinigung, 116 (2014), 87-114.  doi: 10.1365/s13291-014-0086-6.  Google Scholar

[16]

J. S. Yu, A note on periodic solutions of the delay differential equation $x^{\prime}(t)=f(x(t-1))$, Proc. Amer. Math. Soc., 141 (2012), 1281-1288.  doi: 10.1090/S0002-9939-2012-11386-3.  Google Scholar

show all references

References:
[1]

D. Breda, O. Diekmann, D. Liessi and F. Scarabel, Numerical bifurcation analysis of a class of nonlinear renewal equations, Electron. J. Qual. Theo. Diff. Equ., 2016 (2016), 24 pp. doi: 10.14232/ejqtde.2016.1.65.  Google Scholar

[2]

P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954.  Google Scholar

[3]

O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H. O. Walther, Delay Equations: Functional, Complex and Nonlinear Analysis, Applied Mathematical Sciences, 110. Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4206-2.  Google Scholar

[4]

P. Dormayer and A. F. Ivanov, Symmetric periodic solutions of a delay differential equation, Dynamical Systems and Differential Equations, Discrete Contin. Dynam. Systems, 1 (1998), 220-230.   Google Scholar

[5]

P. Dormayer and A. F. Ivanov, Stability of symmetric periodic solutions with small amplitude of $x^{\prime}(t) = \alpha f(x(t), x(t-1))$, Discrete Contin. Dynam. Systems, 5 (1999), 61-82.  doi: 10.3934/dcds.1999.5.61.  Google Scholar

[6]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[7]

J. L. Kaplan and J. A. Yorke, Ordinary differential equations which yield periodic solutions of differential delay equations, J. Math. Anal. Appl., 48 (1974), 317-324.  doi: 10.1016/0022-247X(74)90162-0.  Google Scholar

[8]

B. B. Kennedy, Symmetric periodic solutions for a class of differential delay equations with distributed delay, Electron. J. Qual. Theo. Diff. Equ., 2014 (2014), 18 pp. doi: 10.14232/ejqtde.2014.1.4.  Google Scholar

[9]

J. B. Li and X. Z. He, Proof and generalization of Kaplan-Yorke's conjecture under the condition $f^{\prime}(0)>0$ on periodic solution of differential delay equations, Sci. China Ser. A., 42 (1999), 957-964.  doi: 10.1007/BF02880387.  Google Scholar

[10]

K. R. Meyer, Jacobi elliptic functions from a dynamical systems point of view, The American Mathematical Monthly, 108 (2001), 729-737.  doi: 10.1080/00029890.2001.11919804.  Google Scholar

[11]

R. E. Mickens, Oscillations in Planar Dynamic Systems, Series on Advances in Mathematics for Applied Sciences, 37. World Scientific Publishing Co., Inc., River Edge, NJ, 1996. doi: 10.1142/2778.  Google Scholar

[12]

Y. Nakata, An explicit periodic solution of a delay differential equation, J. Dyn. Diff. Equ., 32 (2020), 163-179.  doi: 10.1007/s10884-018-9681-z.  Google Scholar

[13]

R. D. Nussbaum, Periodic solutions of some nonlinear autonomous functional differential equations, Ann. Mat. Pura Appl. (4), 101 (1974), 263-306.  doi: 10.1007/BF02417109.  Google Scholar

[14] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Second edition, Westview Press, Boulder, CO, 2015.   Google Scholar
[15]

H.-O. Walther, Topics in delay differential equations, Jahresbericht Der Deutschen Mathematiker-Vereinigung, 116 (2014), 87-114.  doi: 10.1365/s13291-014-0086-6.  Google Scholar

[16]

J. S. Yu, A note on periodic solutions of the delay differential equation $x^{\prime}(t)=f(x(t-1))$, Proc. Amer. Math. Soc., 141 (2012), 1281-1288.  doi: 10.1090/S0002-9939-2012-11386-3.  Google Scholar

Figure 2.1.  Symmetric periodic solutions of (2.1) and (1.3)
Figure 4.1.  An SSPS attracts two solutions with different initial conditions ($ r = 8 $)
[1]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[2]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[3]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[4]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[5]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[6]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[7]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[8]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[9]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[10]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[11]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[12]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[13]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[14]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[15]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[16]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[17]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[18]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[19]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[20]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (92)
  • HTML views (270)
  • Cited by (0)

Other articles
by authors

[Back to Top]