-
Previous Article
Fractional operators with boundary points dependent kernels and integration by parts
- DCDS-S Home
- This Issue
- Next Article
Preface on "New trends of numerical and analytical methods"
1. | Institute for Groundwater Studies, University of the Free State, Bloemfontein, 9300, South Africa |
2. | CONACyT-Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira, C.P. 62490, Cuernavaca Morelos, México |
3. | Department of Chemical Engineering, University of Chemical Technology and Metallurgy, Sofia, Sofia 1756, 8 Kliment Ohridsky, blvd, Bulgaria |
4. | Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences University of the Free State, Bloemfontein 9300, South Africa |
5. | Department of Mathematical Sciences Federal University of Technology, PMB 704, Akure Ondo State, Nigeria |
[1] |
Abdon Atangana, Zakia Hammouch, Kolade M. Owolabi, Gisele Mephou. Preface: New trends on numerical analysis and analytical methods with their applications to real world problems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : i-i. doi: 10.3934/dcdss.201903i |
[2] |
Adriano Festa, Diogo Gomes, Francisco J. Silva, Daniela Tonon. Preface: Mean field games: New trends and applications. Journal of Dynamics and Games, 2021, 8 (4) : i-ii. doi: 10.3934/jdg.2021025 |
[3] |
Rosa M. Benito, Regino Criado, Juan C. Losada, Miguel Romance. Preface: "New trends, models and applications in complex and multiplex networks". Networks and Heterogeneous Media, 2015, 10 (1) : i-iii. doi: 10.3934/nhm.2015.10.1i |
[4] |
Asif Yokus, Mehmet Yavuz. Novel comparison of numerical and analytical methods for fractional Burger–Fisher equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2591-2606. doi: 10.3934/dcdss.2020258 |
[5] |
Tomás Caraballo, Juan L. G. Guirao. New trends on nonlinear dynamics and its applications. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : i-ii. doi: 10.3934/dcdss.2015.8.6i |
[6] |
Olivier Guéant. New numerical methods for mean field games with quadratic costs. Networks and Heterogeneous Media, 2012, 7 (2) : 315-336. doi: 10.3934/nhm.2012.7.315 |
[7] |
Fathalla A. Rihan, Yang Kuang, Gennady Bocharov. From the guest editors: "Delay Differential Equations: Theory, Applications and New Trends". Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : i-iv. doi: 10.3934/dcdss.2020404 |
[8] |
Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269 |
[9] |
Edoardo Mainini, Hideki Murakawa, Paolo Piovano, Ulisse Stefanelli. Carbon-nanotube geometries: Analytical and numerical results. Discrete and Continuous Dynamical Systems - S, 2017, 10 (1) : 141-160. doi: 10.3934/dcdss.2017008 |
[10] |
G. Machado, L. Trabucho. Analytical and numerical solutions for a class of optimization problems in elasticity. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1013-1032. doi: 10.3934/dcdsb.2004.4.1013 |
[11] |
Wansheng Wang, Chengjian Zhang. Analytical and numerical dissipativity for nonlinear generalized pantograph equations. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1245-1260. doi: 10.3934/dcds.2011.29.1245 |
[12] |
Michael Herty, Reinhard Illner. Analytical and numerical investigations of refined macroscopic traffic flow models. Kinetic and Related Models, 2010, 3 (2) : 311-333. doi: 10.3934/krm.2010.3.311 |
[13] |
Daniel Ginsberg, Gideon Simpson. Analytical and numerical results on the positivity of steady state solutions of a thin film equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1305-1321. doi: 10.3934/dcdsb.2013.18.1305 |
[14] |
Seunghee Lee, Ganguk Hwang. A new analytical model for optimized cognitive radio networks based on stochastic geometry. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1883-1899. doi: 10.3934/jimo.2017023 |
[15] |
Emmanuel Frénod. Homogenization-based numerical methods. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : i-ix. doi: 10.3934/dcdss.201605i |
[16] |
Bernd Krauskopf, Hinke M. Osinga. Preface: Special issue on continuation methods and applications. Journal of Computational Dynamics, 2022, 9 (3) : i-ii. doi: 10.3934/jcd.2022015 |
[17] |
Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515 |
[18] |
Emmanuel Frénod. An attempt at classifying homogenization-based numerical methods. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : i-vi. doi: 10.3934/dcdss.2015.8.1i |
[19] |
Sebastián J. Ferraro, David Iglesias-Ponte, D. Martín de Diego. Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods. Conference Publications, 2009, 2009 (Special) : 220-229. doi: 10.3934/proc.2009.2009.220 |
[20] |
Yue Qiu, Sara Grundel, Martin Stoll, Peter Benner. Efficient numerical methods for gas network modeling and simulation. Networks and Heterogeneous Media, 2020, 15 (4) : 653-679. doi: 10.3934/nhm.2020018 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]