doi: 10.3934/dcdss.2020401

A fuzzy inventory model for Weibull deteriorating items under completely backlogged shortages

1. 

Department of Mathematics, Veer Surendra Sai University of Technology, Burla 768018, Odisha, India

2. 

Department of Mathematics, College of Engineering and Technology, Bhubaneswar 751029, Odisha, India

3. 

Department of Mathematics, Gauhati, Guwahati 781014, India

* Corresponding author: Susanta Kumar Paikray

Received  November 2019 Published  June 2020

In this paper, a fuzzy stock replenishment policy implemented for inventory items that follows linear demand and Weibull deterioration under completely backlogged shortages. Moreover, to minimize the aggregate expense per unit time, the fuzzy optimal solution is obtained using general mathematical techniques by considering hexagonal fuzzy numbers and graded mean preference integration strategy. Finally, the complete exposition of the model is provided by numerical examples and sensitivity behavior of the associated parameters.

Citation: Deepak Kumar Nayak, Sudhansu Sekhar Routray, Susanta Kumar Paikray, Hemen Dutta. A fuzzy inventory model for Weibull deteriorating items under completely backlogged shortages. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020401
References:
[1]

S. AgarwalS. Banerjee and S. Papachristos, Inventory model with deteriorating items, ramp-type demand and partially backlogged shortages for a two warehouse system, Appl. Math. Model., 37 (2013), 8912-8929.  doi: 10.1016/j.apm.2013.04.026.  Google Scholar

[2]

S. BarikS. K. PaikrayS. Mishra and U. K. Misra, An inventory model for deteriorating items under time varying demand condition, Int. J. Appl. Eng. Res., 10 (2015), 35770-35773.   Google Scholar

[3]

S. BarikS. K. PaikrayS. Mishra and U. K. Misra, A Deteriorating inventory model with shortages under pricedependent demand and inflation, Asian J. Math. Comput. Res., 8 (2016), 14-25.   Google Scholar

[4]

D. ChakrabortyD. K. Jana and T. K. Roy, Two-warehouse partial backlogging inventory model with ramp type demand rate, three-parameter Weibull distribution deterioration under inflation and permissible delay in payments, Comput. Indus. Eng., 123 (2018), 157-179.  doi: 10.1016/j.cie.2018.06.022.  Google Scholar

[5]

R. P. Covert and G. C. Philip, An EOQ model for items with weibull distribution deterioration, AIIE Trans., 5 (1973), 323-326.  doi: 10.1080/05695557308974918.  Google Scholar

[6]

D. S. Dinagar and J. R. Kannan, On fuzzy inventory model with allowable shortage, Internat. J. Pure. Appl. Math., 99 (2015), 65-76.  doi: 10.12732/ijpam.v99i1.6.  Google Scholar

[7]

I. DjordjevicD. Petrovic and G. Stojic, A fuzzy linear programming model for aggregated production planning (APP) in the automotive industry, Comput. Ind., 110 (2019), 48-63.  doi: 10.1016/j.compind.2019.05.004.  Google Scholar

[8]

S. FaddelA. T. Al-Awami and M. A. Abido, Fuzzy optimization for the operation of electric vehicle parking lots, Elect. Pow. Syst. Res., 145 (2017), 166-174.  doi: 10.1016/j.epsr.2017.01.008.  Google Scholar

[9]

P. M. Ghare and G. F. Schrader, A Model for exponentially decaying inventories, J. Ind. Eng., 14 (1963), 238-243.   Google Scholar

[10]

S. K. IndrajitS. RoutrayS. K. Paikray and U. K. Misra, Fuzzy economic productionquantity model with time dependent demand rate, Sci. J. Logis., 12 (2016), 193-198.   Google Scholar

[11]

C. K. JaggiS. PareekA. Khanna and R. Sharma, Credit financing in a two-warehouse environment for deteriorating items with price-sensitive demand and fully backlogged shortages, Appl. Math. Model., 38 (2014), 5315-5333.  doi: 10.1016/j.apm.2014.04.025.  Google Scholar

[12]

S. Jain and M. Kumar, An inventory model with power demand pattern Weibull distribution deterioration and shortages, J. Indian Acad. Math., 30 (2008), 55-61.   Google Scholar

[13]

J. Kacprzyk and P. Stanieski, Long-term inventory policy-making through fuzzy decision-making models, Fuzzy Sets Syst., 8 (1982), 117-132.  doi: 10.1016/0165-0114(82)90002-1.  Google Scholar

[14]

C. Kao and W. K. Hsu, A single-period inventory model with fuzzy demand, Comput. Math. Appl., 43 (2002), 841-848.  doi: 10.1016/S0898-1221(01)00325-X.  Google Scholar

[15]

M. T. LamataD. Pelta and J. L. Verdegay, Optimisation problems as decision problems: The case of fuzzy optimisation problems, Inform. Sci., 460/461 (2018), 377-388.  doi: 10.1016/j.ins.2017.07.035.  Google Scholar

[16]

H. M. Lee and J. S. Yao, Economic production quantity for fuzzy demand and fuzzy production quantity., European J. Oper. Res., 109 (1998), 203-211.  doi: 10.1016/S0377-2217(97)00200-2.  Google Scholar

[17]

J. Mezei and S. Nikou, Fuzzy optimization to improve mobile health and wellness recommendation systems, Knowledge-Based Syst., 142 (2018), 108-116.  doi: 10.1016/j.knosys.2017.11.030.  Google Scholar

[18]

S. MishraG. MisraU. K. Misra and L. K. Raju, An inventory model with quadratic demand pattern and deterioration with shortages under the influence of inflation, Math. Financ. Lett., 1 (2012), 57-67.   Google Scholar

[19]

S. MishraS. BarikS. K. Paikray and U. K. Misra, An inventory control model of deteriorating items in fuzzy environment, Global J. Pure Appl. Math., 11 (2015), 1301-1312.   Google Scholar

[20]

S. MisraU. K. MisraS. Barik and S. K. Paikray, An inventory model for inflation induced demand and Weibull deteriorating items, Internat. J. Adv. Eng. Technol., 4 (2012), 176-182.   Google Scholar

[21]

H. S. NajafiS. A. Edalatpanah and H. Dutta, A nonlinear model for fully fuzzy linear programming with fully unrestricted variables and parameters, Alexandria Eng. J., 55 (2016), 2589-2595.   Google Scholar

[22]

S. PalG. S. Mahapatra and G. P. Samanta, An EPQ model of ramp type demand with Weibull deterioration under inflation and finite horizon in crisp and fuzzy environment, International Journal of Production Economics, 156 (2014), 159-166.  doi: 10.1016/j.ijpe.2014.05.007.  Google Scholar

[23]

K. S. Park, Fuzzy set theoretical interpretation of economic order quantity, IEEE Trans., 17 (1987), 1082-1084.   Google Scholar

[24]

L. K. RajuU. K. MisraS. Mishra and G. Misra, An inventory model for Weibull deteriorating items with linear demand pattern, J. Comput. Math. Sci., 3 (2012), 440-445.   Google Scholar

[25]

S. S. RoutrayS. K. PaikrayS. Misra and U. K. Misra, Fuzzy inventory model with single item under time dependent demand and holding cost, Internat. J. Adv. Res. Sci. Eng., 6 (2017), 1604-1618.   Google Scholar

[26]

S. S. Sanni and W. I. E. Chukwu, An economic order quantity model for items with three-parameter Weibull distribution deterioration, ramp-type demand and shortages, Appl. Math. Model., 37 (2013), 9698-9706.  doi: 10.1016/j.apm.2013.05.017.  Google Scholar

[27]

S. Sarbjit and S. S. Raj, An optimal inventory policy for items having linear demand and variable deterioration rate with trade credit, J. Math. Stat., 5 (2009), 330-333.  doi: 10.3844/jmssp.2009.330.333.  Google Scholar

[28]

Y. K. Shah, An order-level lot-size inventory model for deteriorating items, AIEE Trans., 9 (1977), 108-112.  doi: 10.1080/05695557708975129.  Google Scholar

[29]

I. Tomba and K. H. Brojendro, An inventory model with linear demand pattern and deterioration with shortages, J. Indian Acad. Math., 33 (2011), 607-612.   Google Scholar

[30]

C. K. TripathyL. M. Pradhan and U. Mishra, An EPQ model for linear deteriorating item with variable holding cost, Int. J. Comput. Appl. Math., 5 (2010), 209-215.   Google Scholar

[31]

G. Viji and K. Karthikeyan, An economic production quantity model for three levels of production with Weibull distribution deterioration and shortage, Ain Shams Eng. J., 9 (2018), 1481-1487.  doi: 10.1016/j.asej.2016.10.006.  Google Scholar

[32] T. M. Whitin, The Theory of Inventory Management, 2$^{nd}$ edition, Princeton University Press, Princeton, New Jersey, 1957.   Google Scholar
[33]

H-L. Yang, Two-warehouse partial backlogging inventory models with three-parameter Weibull distribution deterioration under inflation, Int. J. Prod. Econ., 138 (2012), 107-116.  doi: 10.1016/j.ijpe.2012.03.007.  Google Scholar

[34]

H.-M. Lee and J.-S. Yao, Economic order quantity in fuzzy sense for inventory without back-order model, Fuzzy Sets Syst., 105 (1999), 13-31.  doi: 10.1016/S0165-0114(97)00227-3.  Google Scholar

[35]

L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353.  doi: 10.1016/S0019-9958(65)90241-X.  Google Scholar

[36]

H.-J. Zimmerman, Fuzzy programming and linear programming with several objective Functions, Fuzzy Sets Syst., 1 (1978), 45-55.  doi: 10.1016/0165-0114(78)90031-3.  Google Scholar

show all references

References:
[1]

S. AgarwalS. Banerjee and S. Papachristos, Inventory model with deteriorating items, ramp-type demand and partially backlogged shortages for a two warehouse system, Appl. Math. Model., 37 (2013), 8912-8929.  doi: 10.1016/j.apm.2013.04.026.  Google Scholar

[2]

S. BarikS. K. PaikrayS. Mishra and U. K. Misra, An inventory model for deteriorating items under time varying demand condition, Int. J. Appl. Eng. Res., 10 (2015), 35770-35773.   Google Scholar

[3]

S. BarikS. K. PaikrayS. Mishra and U. K. Misra, A Deteriorating inventory model with shortages under pricedependent demand and inflation, Asian J. Math. Comput. Res., 8 (2016), 14-25.   Google Scholar

[4]

D. ChakrabortyD. K. Jana and T. K. Roy, Two-warehouse partial backlogging inventory model with ramp type demand rate, three-parameter Weibull distribution deterioration under inflation and permissible delay in payments, Comput. Indus. Eng., 123 (2018), 157-179.  doi: 10.1016/j.cie.2018.06.022.  Google Scholar

[5]

R. P. Covert and G. C. Philip, An EOQ model for items with weibull distribution deterioration, AIIE Trans., 5 (1973), 323-326.  doi: 10.1080/05695557308974918.  Google Scholar

[6]

D. S. Dinagar and J. R. Kannan, On fuzzy inventory model with allowable shortage, Internat. J. Pure. Appl. Math., 99 (2015), 65-76.  doi: 10.12732/ijpam.v99i1.6.  Google Scholar

[7]

I. DjordjevicD. Petrovic and G. Stojic, A fuzzy linear programming model for aggregated production planning (APP) in the automotive industry, Comput. Ind., 110 (2019), 48-63.  doi: 10.1016/j.compind.2019.05.004.  Google Scholar

[8]

S. FaddelA. T. Al-Awami and M. A. Abido, Fuzzy optimization for the operation of electric vehicle parking lots, Elect. Pow. Syst. Res., 145 (2017), 166-174.  doi: 10.1016/j.epsr.2017.01.008.  Google Scholar

[9]

P. M. Ghare and G. F. Schrader, A Model for exponentially decaying inventories, J. Ind. Eng., 14 (1963), 238-243.   Google Scholar

[10]

S. K. IndrajitS. RoutrayS. K. Paikray and U. K. Misra, Fuzzy economic productionquantity model with time dependent demand rate, Sci. J. Logis., 12 (2016), 193-198.   Google Scholar

[11]

C. K. JaggiS. PareekA. Khanna and R. Sharma, Credit financing in a two-warehouse environment for deteriorating items with price-sensitive demand and fully backlogged shortages, Appl. Math. Model., 38 (2014), 5315-5333.  doi: 10.1016/j.apm.2014.04.025.  Google Scholar

[12]

S. Jain and M. Kumar, An inventory model with power demand pattern Weibull distribution deterioration and shortages, J. Indian Acad. Math., 30 (2008), 55-61.   Google Scholar

[13]

J. Kacprzyk and P. Stanieski, Long-term inventory policy-making through fuzzy decision-making models, Fuzzy Sets Syst., 8 (1982), 117-132.  doi: 10.1016/0165-0114(82)90002-1.  Google Scholar

[14]

C. Kao and W. K. Hsu, A single-period inventory model with fuzzy demand, Comput. Math. Appl., 43 (2002), 841-848.  doi: 10.1016/S0898-1221(01)00325-X.  Google Scholar

[15]

M. T. LamataD. Pelta and J. L. Verdegay, Optimisation problems as decision problems: The case of fuzzy optimisation problems, Inform. Sci., 460/461 (2018), 377-388.  doi: 10.1016/j.ins.2017.07.035.  Google Scholar

[16]

H. M. Lee and J. S. Yao, Economic production quantity for fuzzy demand and fuzzy production quantity., European J. Oper. Res., 109 (1998), 203-211.  doi: 10.1016/S0377-2217(97)00200-2.  Google Scholar

[17]

J. Mezei and S. Nikou, Fuzzy optimization to improve mobile health and wellness recommendation systems, Knowledge-Based Syst., 142 (2018), 108-116.  doi: 10.1016/j.knosys.2017.11.030.  Google Scholar

[18]

S. MishraG. MisraU. K. Misra and L. K. Raju, An inventory model with quadratic demand pattern and deterioration with shortages under the influence of inflation, Math. Financ. Lett., 1 (2012), 57-67.   Google Scholar

[19]

S. MishraS. BarikS. K. Paikray and U. K. Misra, An inventory control model of deteriorating items in fuzzy environment, Global J. Pure Appl. Math., 11 (2015), 1301-1312.   Google Scholar

[20]

S. MisraU. K. MisraS. Barik and S. K. Paikray, An inventory model for inflation induced demand and Weibull deteriorating items, Internat. J. Adv. Eng. Technol., 4 (2012), 176-182.   Google Scholar

[21]

H. S. NajafiS. A. Edalatpanah and H. Dutta, A nonlinear model for fully fuzzy linear programming with fully unrestricted variables and parameters, Alexandria Eng. J., 55 (2016), 2589-2595.   Google Scholar

[22]

S. PalG. S. Mahapatra and G. P. Samanta, An EPQ model of ramp type demand with Weibull deterioration under inflation and finite horizon in crisp and fuzzy environment, International Journal of Production Economics, 156 (2014), 159-166.  doi: 10.1016/j.ijpe.2014.05.007.  Google Scholar

[23]

K. S. Park, Fuzzy set theoretical interpretation of economic order quantity, IEEE Trans., 17 (1987), 1082-1084.   Google Scholar

[24]

L. K. RajuU. K. MisraS. Mishra and G. Misra, An inventory model for Weibull deteriorating items with linear demand pattern, J. Comput. Math. Sci., 3 (2012), 440-445.   Google Scholar

[25]

S. S. RoutrayS. K. PaikrayS. Misra and U. K. Misra, Fuzzy inventory model with single item under time dependent demand and holding cost, Internat. J. Adv. Res. Sci. Eng., 6 (2017), 1604-1618.   Google Scholar

[26]

S. S. Sanni and W. I. E. Chukwu, An economic order quantity model for items with three-parameter Weibull distribution deterioration, ramp-type demand and shortages, Appl. Math. Model., 37 (2013), 9698-9706.  doi: 10.1016/j.apm.2013.05.017.  Google Scholar

[27]

S. Sarbjit and S. S. Raj, An optimal inventory policy for items having linear demand and variable deterioration rate with trade credit, J. Math. Stat., 5 (2009), 330-333.  doi: 10.3844/jmssp.2009.330.333.  Google Scholar

[28]

Y. K. Shah, An order-level lot-size inventory model for deteriorating items, AIEE Trans., 9 (1977), 108-112.  doi: 10.1080/05695557708975129.  Google Scholar

[29]

I. Tomba and K. H. Brojendro, An inventory model with linear demand pattern and deterioration with shortages, J. Indian Acad. Math., 33 (2011), 607-612.   Google Scholar

[30]

C. K. TripathyL. M. Pradhan and U. Mishra, An EPQ model for linear deteriorating item with variable holding cost, Int. J. Comput. Appl. Math., 5 (2010), 209-215.   Google Scholar

[31]

G. Viji and K. Karthikeyan, An economic production quantity model for three levels of production with Weibull distribution deterioration and shortage, Ain Shams Eng. J., 9 (2018), 1481-1487.  doi: 10.1016/j.asej.2016.10.006.  Google Scholar

[32] T. M. Whitin, The Theory of Inventory Management, 2$^{nd}$ edition, Princeton University Press, Princeton, New Jersey, 1957.   Google Scholar
[33]

H-L. Yang, Two-warehouse partial backlogging inventory models with three-parameter Weibull distribution deterioration under inflation, Int. J. Prod. Econ., 138 (2012), 107-116.  doi: 10.1016/j.ijpe.2012.03.007.  Google Scholar

[34]

H.-M. Lee and J.-S. Yao, Economic order quantity in fuzzy sense for inventory without back-order model, Fuzzy Sets Syst., 105 (1999), 13-31.  doi: 10.1016/S0165-0114(97)00227-3.  Google Scholar

[35]

L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353.  doi: 10.1016/S0019-9958(65)90241-X.  Google Scholar

[36]

H.-J. Zimmerman, Fuzzy programming and linear programming with several objective Functions, Fuzzy Sets Syst., 1 (1978), 45-55.  doi: 10.1016/0165-0114(78)90031-3.  Google Scholar

Figure 1.  Inventory level at any time $ t $
Figure 2.  Effect of parameter α on τ
Figure 3.  Effect of parameter $ \alpha $ on G$ \mathbb{Z}(\tau) $
Figure 4.  Effect of parameter $ \alpha $ on $ W1 $
Figure 5.  Effect of parameter $ \beta $ on $ \tau $
Figure 6.  Effect of parameter $ \beta $ on G$ \mathbb{Z}(\tau) $
Figure 7.  Effect of parameter $ \beta $ on $ W1 $
Figure 8.  Effect of parameter $ \eta $ on $ \tau $
Figure 9.  Effect of parameter $ \eta $ on G$ \mathbb{Z}(\tau) $
Figure 10.  Effect of parameter $ \eta $ on $ W1 $
Figure 11.  Effect of parameter $ \gamma $ on $ \tau $
Figure 12.  Effect of parameter $ \gamma $ on G$ \mathbb{Z}(\tau) $
Figure 13.  Effect of parameter $ \gamma $ on $ W1 $
Figure 14.  Effect of parameter $ T $ on $ \tau $
Figure 15.  Effect of parameter $ T $ on G$ \mathbb{Z}(\tau) $
Figure 16.  Effect of parameter $ T $ on $ W1 $
Table 1.  Sensitivity of parameter $ \alpha $
$ \alpha $ $ \tau $ $ G\mathbb{Z}(t) $ $ W1 $
200 1.23281 6225.45 442.512
250 1.22869 7661.34 543.03
300 1.22586 9097.01 643.548
350 1.2238 10532.6 744.067
400 1.22223 11968. 844.586
$ \alpha $ $ \tau $ $ G\mathbb{Z}(t) $ $ W1 $
200 1.23281 6225.45 442.512
250 1.22869 7661.34 543.03
300 1.22586 9097.01 643.548
350 1.2238 10532.6 744.067
400 1.22223 11968. 844.586
Table 2.  Sensitivity of parameter $ \beta $
$\beta$$\tau$$G\mathbb{Z}(t)$$W1$
201.232816225.45442.512
251.237786345.58452.624
301.242556465.34462.738
351.247126584.76472.852
401.251516703.86482.968
$\beta$$\tau$$G\mathbb{Z}(t)$$W1$
201.232816225.45442.512
251.237786345.58452.624
301.242556465.34462.738
351.247126584.76472.852
401.251516703.86482.968
Table 3.  Sensitivity of parameter $ \eta $
$\eta$$\tau$$G\mathbb{Z}(t)$$W1$
0.021.232816225.45442.512
0.031.214816287.83443.496
0.041.198786345.67444.357
0.051.184326399.64445.12
0.061.171176450.29445.804
$\eta$$\tau$$G\mathbb{Z}(t)$$W1$
0.021.232816225.45442.512
0.031.214816287.83443.496
0.041.198786345.67444.357
0.051.184326399.64445.12
0.061.171176450.29445.804
Table 4.  Sensitivity of parameter $ \gamma $
$\gamma$$\tau$$G\mathbb{Z}(t)$$W1$
41.232816225.45442.512
51.223686232.24442.473
61.21416240.8442.458
71.204336250.49442.45
81.194596260.82442.439
$\gamma$$\tau$$G\mathbb{Z}(t)$$W1$
41.232816225.45442.512
51.223686232.24442.473
61.21416240.8442.458
71.204336250.49442.45
81.194596260.82442.439
Table 5.  Sensitivity of parameter T
$T$$\tau$$G\mathbb{Z}(t)$$W1$
21.232816225.45442.512
2.11.28846586.13467.245
2.21.342816954.19492.284
2.31.3967330.517.635
2.41.447947713.94543.306
$T$$\tau$$G\mathbb{Z}(t)$$W1$
21.232816225.45442.512
2.11.28846586.13467.245
2.21.342816954.19492.284
2.31.3967330.517.635
2.41.447947713.94543.306
[1]

Haripriya Barman, Magfura Pervin, Sankar Kumar Roy, Gerhard-Wilhelm Weber. Back-ordered inventory model with inflation in a cloudy-fuzzy environment. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1913-1941. doi: 10.3934/jimo.2020052

[2]

Guiyang Zhu. Optimal pricing and ordering policy for defective items under temporary price reduction with inspection errors and price sensitive demand. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021060

[3]

Javad Taheri, Abolfazl Mirzazadeh. Optimization of inventory system with defects, rework failure and two types of errors under crisp and fuzzy approach. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021068

[4]

Ru Li, Guolin Yu. Strict efficiency of a multi-product supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2203-2215. doi: 10.3934/jimo.2020065

[5]

İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021010

[6]

Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021016

[7]

Caichun Chai, Tiaojun Xiao, Zhangwei Feng. Evolution of revenue preference for competing firms with nonlinear inverse demand. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021071

[8]

Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021002

[9]

Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046

[10]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[11]

Gaurav Nagpal, Udayan Chanda, Nitant Upasani. Inventory replenishment policies for two successive generations price-sensitive technology products. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021036

[12]

Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021051

[13]

Xue Qiao, Zheng Wang, Haoxun Chen. Joint optimal pricing and inventory management policy and its sensitivity analysis for perishable products: Lost sale case. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021079

[14]

Mostafa Ghelichi, A. M. Goltabar, H. R. Tavakoli, A. Karamodin. Neuro-fuzzy active control optimized by Tug of war optimization method for seismically excited benchmark highway bridge. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 333-351. doi: 10.3934/naco.2020029

[15]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[16]

Qiang Lin, Yang Xiao, Jingju Zheng. Selecting the supply chain financing mode under price-sensitive demand: Confirmed warehouse financing vs. trade credit. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2031-2049. doi: 10.3934/jimo.2020057

[17]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[18]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[19]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[20]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (61)
  • HTML views (362)
  • Cited by (0)

[Back to Top]