# American Institute of Mathematical Sciences

July  2021, 14(7): 2025-2039. doi: 10.3934/dcdss.2020402

## Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme

 1 Department of Mathematics, Shahid Rajaee Teacher Training University, Tehran, Iran 2 Department of Mathematics, University of Mazandaran, Babolsar, Iran, Department of Mathematical Sciences, University of South Africa, UNISA 0003, South Africa 3 Department of Mathematics, Cankaya University, Ankara, Turkey, Institute of Space Sciences, Magurele-Bucharest, Romania

* Corresponding author: Hamid Safdari

Received  December 2019 Revised  January 2020 Published  July 2021 Early access  June 2020

This paper develops a numerical scheme for finding the approximate solution of space fractional order of the diffusion equation (SFODE). Firstly, the compact finite difference (CFD) with convergence order $\mathcal{O}(\delta \tau ^{2})$ is used for discretizing time derivative. Afterwards, the spatial fractional derivative is approximated by the Chebyshev collocation method of the fourth kind. Furthermore, time-discrete stability and convergence analysis are presented. Finally, two examples are numerically investigated by the proposed method. The examples illustrate the performance and accuracy of our method compared to existing methods presented in the literature.

Citation: Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2025-2039. doi: 10.3934/dcdss.2020402
##### References:

show all references

##### References:
Plots of the approximate solution (left side) and absolute error (right side) of Example 5.1 at $T = 1$, $M = 400$ and $N = 5$
The maximum absolute error and error norm $L_{2}$ of Example 5.1 at $T = 1$, $N = 5$ and $M = 200,400,600, \ldots, 3000$
Error histories of Example 5.1 at $T = 1$, $N = 5$ and $M = 100,200,400,800, 1600$
Error histories of Example 5.1 at $T = 1$, $M = 400$ and $N = 3, 5, 7, 9$
Error histories of Example 5.2 at $T = 1$, with $M = 100,200,400,800, 1600,$ $N = 5$ (left side) and $N = 7$ (right side)
The absolute error of Example 5.1 at $T = 1$
 $x$ with $N=7$ in with $N=7$ in with $N=3$ in our method with $N=3$ [15] [27] [30] $0$ $2.81\times 10^{-5}$ $0$ $0$ $4.77\times 10^{-17}$ $0.1$ $4.26\times 10^{-5}$ $4.66\times 10^{-5}$ $5.46\times 10^{-6}$ $3.17\times 10^{-9}$ $0.2$ $5.39\times 10^{-5}$ $7.74\times 10^{-5}$ $8.51\times 10^{-6}$ $5.85\times 10^{-9}$ $0.3$ $6.12\times 10^{-5}$ $5.00\times 10^{-5}$ $9.60\times 10^{-6}$ $7.97\times 10^{-9}$ $0.4$ $6.48\times 10^{-5}$ $2.30\times 10^{-5}$ $9.18\times 10^{-6}$ $9.44\times 10^{-9}$ $0.5$ $6.45\times 10^{-5}$ $2.74\times 10^{-5}$ $7.69\times 10^{-6}$ $1.02\times 10^{-8}$ $0.6$ $5.98\times 10^{-5}$ $4.38\times 10^{-5}$ $5.60\times 10^{-6}$ $1.01\times 10^{-8}$ $0.7$ $5.23\times 10^{-5}$ $3.87\times 10^{-5}$ $3.33\times 10^{-6}$ $9.12\times 10^{-9}$ $0.8$ $4.48\times 10^{-5}$ $1.01\times 10^{-5}$ $1.34\times 10^{-6}$ $7.17\times 10^{-9}$ $0.9$ $3.91\times 10^{-5}$ $3.35\times 10^{-5}$ $8.39\times 10^{-8}$ $4.16\times 10^{-9}$ $1.0$ $2.81\times 10^{-5}$ $0$ $0$ $7.55\times 10^{-17}$
 $x$ with $N=7$ in with $N=7$ in with $N=3$ in our method with $N=3$ [15] [27] [30] $0$ $2.81\times 10^{-5}$ $0$ $0$ $4.77\times 10^{-17}$ $0.1$ $4.26\times 10^{-5}$ $4.66\times 10^{-5}$ $5.46\times 10^{-6}$ $3.17\times 10^{-9}$ $0.2$ $5.39\times 10^{-5}$ $7.74\times 10^{-5}$ $8.51\times 10^{-6}$ $5.85\times 10^{-9}$ $0.3$ $6.12\times 10^{-5}$ $5.00\times 10^{-5}$ $9.60\times 10^{-6}$ $7.97\times 10^{-9}$ $0.4$ $6.48\times 10^{-5}$ $2.30\times 10^{-5}$ $9.18\times 10^{-6}$ $9.44\times 10^{-9}$ $0.5$ $6.45\times 10^{-5}$ $2.74\times 10^{-5}$ $7.69\times 10^{-6}$ $1.02\times 10^{-8}$ $0.6$ $5.98\times 10^{-5}$ $4.38\times 10^{-5}$ $5.60\times 10^{-6}$ $1.01\times 10^{-8}$ $0.7$ $5.23\times 10^{-5}$ $3.87\times 10^{-5}$ $3.33\times 10^{-6}$ $9.12\times 10^{-9}$ $0.8$ $4.48\times 10^{-5}$ $1.01\times 10^{-5}$ $1.34\times 10^{-6}$ $7.17\times 10^{-9}$ $0.9$ $3.91\times 10^{-5}$ $3.35\times 10^{-5}$ $8.39\times 10^{-8}$ $4.16\times 10^{-9}$ $1.0$ $2.81\times 10^{-5}$ $0$ $0$ $7.55\times 10^{-17}$
The absolute error of Example 5.1 at $T = 2$
 $x$ with $N=5$ in with $N=5$ in with $N=3$ in our method with $N=3$  [15] [27] [30] $0$ $2.74\times 10^{-5}$ $0$ $0$ $1.86\times 10^{-17}$ $0.1$ $4.20\times 10^{-5}$ $4.47\times 10^{-6}$ $3.33\times 10^{-6}$ $1.28\times 10^{-8}$ $0.2$ $3.76\times 10^{-5}$ $2.78\times 10^{-7}$ $5.65\times 10^{-6}$ $2.05\times 10^{-8}$ $0.3$ $8.44\times 10^{-5}$ $5.81\times 10^{-6}$ $7.05\times 10^{-6}$ $2.40\times 10^{-8}$ $0.4$ $3.27\times 10^{-5}$ $1.02\times 10^{-5}$ $7.64\times 10^{-6}$ $2.40\times 10^{-8}$ $0.5$ $3.61\times 10^{-5}$ $1.17\times 10^{-5}$ $7.52\times 10^{-6}$ $2.15\times 10^{-8}$ $0.6$ $1.94\times 10^{-5}$ $1.08\times 10^{-5}$ $6.80\times 10^{-6}$ $1.72\times 10^{-8}$ $0.7$ $2.95\times 10^{-5}$ $8.54\times 10^{-6}$ $5.59\times 10^{-6}$ $1.21\times 10^{-8}$ $0.8$ $4.92\times 10^{-5}$ $6.06\times 10^{-6}$ $3.98\times 10^{-6}$ $6.93\times 10^{-9}$ $0.9$ $2.83\times 10^{-5}$ $3.67\times 10^{-6}$ $2.08\times 10^{-6}$ $2.62\times 10^{-9}$ $1.0$ $7.73\times 10^{-5}$ $0$ $0$ $8.24\times 10^{-18}$
 $x$ with $N=5$ in with $N=5$ in with $N=3$ in our method with $N=3$  [15] [27] [30] $0$ $2.74\times 10^{-5}$ $0$ $0$ $1.86\times 10^{-17}$ $0.1$ $4.20\times 10^{-5}$ $4.47\times 10^{-6}$ $3.33\times 10^{-6}$ $1.28\times 10^{-8}$ $0.2$ $3.76\times 10^{-5}$ $2.78\times 10^{-7}$ $5.65\times 10^{-6}$ $2.05\times 10^{-8}$ $0.3$ $8.44\times 10^{-5}$ $5.81\times 10^{-6}$ $7.05\times 10^{-6}$ $2.40\times 10^{-8}$ $0.4$ $3.27\times 10^{-5}$ $1.02\times 10^{-5}$ $7.64\times 10^{-6}$ $2.40\times 10^{-8}$ $0.5$ $3.61\times 10^{-5}$ $1.17\times 10^{-5}$ $7.52\times 10^{-6}$ $2.15\times 10^{-8}$ $0.6$ $1.94\times 10^{-5}$ $1.08\times 10^{-5}$ $6.80\times 10^{-6}$ $1.72\times 10^{-8}$ $0.7$ $2.95\times 10^{-5}$ $8.54\times 10^{-6}$ $5.59\times 10^{-6}$ $1.21\times 10^{-8}$ $0.8$ $4.92\times 10^{-5}$ $6.06\times 10^{-6}$ $3.98\times 10^{-6}$ $6.93\times 10^{-9}$ $0.9$ $2.83\times 10^{-5}$ $3.67\times 10^{-6}$ $2.08\times 10^{-6}$ $2.62\times 10^{-9}$ $1.0$ $7.73\times 10^{-5}$ $0$ $0$ $8.24\times 10^{-18}$
The absolute error of Example 5.1 at $T = 10$
 $x$ $N=3$ $N=5$ $N=7$ $0$ $5.82\times 10^{-21}$ $5.93\times 10^{-22}$ $4.43\times 10^{-21}$ $0.2$ $1.01\times 10^{-9}$ $4.74\times 10^{-9}$ $2.28\times 10^{-9}$ $0.4$ $8.21\times 10^{-9}$ $8.11\times 10^{-9}$ $4.21\times 10^{-9}$ $0.6$ $1.28\times 10^{-9}$ $1.17\times 10^{-9}$ $1.15\times 10^{-9}$ $0.8$ $3.76\times 10^{-9}$ $7.93\times 10^{-10}$ $2.71\times 10^{-10}$ $1.0$ $4.34\times 10^{-21}$ $3.78\times 10^{-21}$ $1.14\times 10^{-22}$
 $x$ $N=3$ $N=5$ $N=7$ $0$ $5.82\times 10^{-21}$ $5.93\times 10^{-22}$ $4.43\times 10^{-21}$ $0.2$ $1.01\times 10^{-9}$ $4.74\times 10^{-9}$ $2.28\times 10^{-9}$ $0.4$ $8.21\times 10^{-9}$ $8.11\times 10^{-9}$ $4.21\times 10^{-9}$ $0.6$ $1.28\times 10^{-9}$ $1.17\times 10^{-9}$ $1.15\times 10^{-9}$ $0.8$ $3.76\times 10^{-9}$ $7.93\times 10^{-10}$ $2.71\times 10^{-10}$ $1.0$ $4.34\times 10^{-21}$ $3.78\times 10^{-21}$ $1.14\times 10^{-22}$
The convergence order, the errors $L_{2}$ and $L_{\infty}$ for Example 5.1 with $T = 1$ and $N = 3$
 $\delta \tau$ $L_{\infty}$ $C_{\delta \tau}$ $L_{2}$ $C_{\delta \tau}$ $\frac{1}{100}$ $1.62773\times 10^{-7}$ $3.76647\times 10^{-7}$ $\frac{1}{200}$ $4.06928\times 10^{-8}$ $2.00002$ $9.41607\times 10^{-8}$ $2.00002$ $\frac{1}{400}$ $1.01732\times 10^{-8}$ $2.00000$ $2.35401\times 10^{-8}$ $2.00000$ $\frac{1}{800}$ $2.54329\times 10^{-9}$ $2.00000$ $5.88503\times 10^{-9}$ $2.00000$ $\frac{1}{1600}$ $6.35828\times 10^{-10}$ $1.99999$ $1.47127\times 10^{-9}$ $1.99999$ $\mathrm{TCO}$ $2$ $2$
 $\delta \tau$ $L_{\infty}$ $C_{\delta \tau}$ $L_{2}$ $C_{\delta \tau}$ $\frac{1}{100}$ $1.62773\times 10^{-7}$ $3.76647\times 10^{-7}$ $\frac{1}{200}$ $4.06928\times 10^{-8}$ $2.00002$ $9.41607\times 10^{-8}$ $2.00002$ $\frac{1}{400}$ $1.01732\times 10^{-8}$ $2.00000$ $2.35401\times 10^{-8}$ $2.00000$ $\frac{1}{800}$ $2.54329\times 10^{-9}$ $2.00000$ $5.88503\times 10^{-9}$ $2.00000$ $\frac{1}{1600}$ $6.35828\times 10^{-10}$ $1.99999$ $1.47127\times 10^{-9}$ $1.99999$ $\mathrm{TCO}$ $2$ $2$
The convergence order, the errors $L_{2}$ and $L_{\infty}$ for Example 5.1 with $T = 10$ and $N = 3$
 $\delta \tau$ $L_{\infty}$ $C_{\delta\tau}$ $L_{2}$ $C_{\delta \tau}$ $\frac{1}{100}$ $1.63402\times 10^{-7}$ $3.10926\times 10^{-7}$ $\frac{1}{200}$ $4.08673\times 10^{-8}$ $1.99941$ $7.77632\times 10^{-8}$ $1.99941$ $\frac{1}{400}$ $1.02179\times 10^{-8}$ $1.99985$ $1.94428\times 10^{-8}$ $1.99985$ $\frac{1}{800}$ $2.55453\times 10^{-9}$ $1.99996$ $4.86082\times 10^{-9}$ $1.99996$ $\frac{1}{1600}$ $6.38636\times 10^{-10}$ $1.99999$ $1.21521\times 10^{-9}$ $1.99999$ $\mathrm{TCO}$ $2$ $2$
 $\delta \tau$ $L_{\infty}$ $C_{\delta\tau}$ $L_{2}$ $C_{\delta \tau}$ $\frac{1}{100}$ $1.63402\times 10^{-7}$ $3.10926\times 10^{-7}$ $\frac{1}{200}$ $4.08673\times 10^{-8}$ $1.99941$ $7.77632\times 10^{-8}$ $1.99941$ $\frac{1}{400}$ $1.02179\times 10^{-8}$ $1.99985$ $1.94428\times 10^{-8}$ $1.99985$ $\frac{1}{800}$ $2.55453\times 10^{-9}$ $1.99996$ $4.86082\times 10^{-9}$ $1.99996$ $\frac{1}{1600}$ $6.38636\times 10^{-10}$ $1.99999$ $1.21521\times 10^{-9}$ $1.99999$ $\mathrm{TCO}$ $2$ $2$
The convergence order, the errors $L_{2}$ and $L_{\infty}$ for Example 5.2 with $N = 7$ at $T = 1$
 $\delta\tau$ $L_{\infty}$ $C_{\delta\tau}$ $L_{2}$ $C_{\delta \tau}$ $\frac{1}{100}$ $1.71816\times 10^{-6}$ $3.73349\times 10^{-6}$ $\frac{1}{200}$ $4.29538\times 10^{-7}$ $2.00000$ $9.33372\times 10^{-7}$ $2.00000$ $\frac{1}{400}$ $1.07384\times 10^{-7}$ $2.00000$ $2.33343\times 10^{-7}$ $2.00000$ $\frac{1}{800}$ $2.68460\times 10^{-8}$ $2.00000$ $5.83360\times 10^{-8}$ $2.00000$ $\frac{1}{1600}$ $6.71143\times 10^{-9}$ $2.00002$ $1.45842\times 10^{-8}$ $1.99998$ $\mathrm{TCO}$ $2$ $2$
 $\delta\tau$ $L_{\infty}$ $C_{\delta\tau}$ $L_{2}$ $C_{\delta \tau}$ $\frac{1}{100}$ $1.71816\times 10^{-6}$ $3.73349\times 10^{-6}$ $\frac{1}{200}$ $4.29538\times 10^{-7}$ $2.00000$ $9.33372\times 10^{-7}$ $2.00000$ $\frac{1}{400}$ $1.07384\times 10^{-7}$ $2.00000$ $2.33343\times 10^{-7}$ $2.00000$ $\frac{1}{800}$ $2.68460\times 10^{-8}$ $2.00000$ $5.83360\times 10^{-8}$ $2.00000$ $\frac{1}{1600}$ $6.71143\times 10^{-9}$ $2.00002$ $1.45842\times 10^{-8}$ $1.99998$ $\mathrm{TCO}$ $2$ $2$
The comparison of maximum error of our proposed method and [32] for Example 5.2, at $T = 1$
 Max error-CN [32] Max error-ext CN [32] the present method with N=3 $6.84895\times 10^{-4}$ $2.82750 \times 10^{-5}$ $9.95930\times 10^{-8}$
 Max error-CN [32] Max error-ext CN [32] the present method with N=3 $6.84895\times 10^{-4}$ $2.82750 \times 10^{-5}$ $9.95930\times 10^{-8}$
 [1] Wei Qu, Siu-Long Lei, Seak-Weng Vong. A note on the stability of a second order finite difference scheme for space fractional diffusion equations. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 317-325. doi: 10.3934/naco.2014.4.317 [2] Ömer Oruç, Alaattin Esen, Fatih Bulut. A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers' equation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 533-542. doi: 10.3934/dcdss.2019035 [3] Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007 [4] Zhonghui Li, Xiangyong Chen, Jianlong Qiu, Tongshui Xia. A novel Chebyshev-collocation spectral method for solving the transport equation. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2519-2526. doi: 10.3934/jimo.2020080 [5] Yuling Guo, Zhongqing Wang. A multi-domain Chebyshev collocation method for nonlinear fractional delay differential equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022052 [6] Zhong Wang. Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4091-4108. doi: 10.3934/dcds.2017174 [7] Meng Zhao, Aijie Cheng, Hong Wang. A preconditioned fast Hermite finite element method for space-fractional diffusion equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3529-3545. doi: 10.3934/dcdsb.2017178 [8] Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234 [9] Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control and Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177 [10] Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5495-5508. doi: 10.3934/dcdsb.2020355 [11] Nikolay Dimitrov, Stepan Tersian. Existence of homoclinic solutions for a nonlinear fourth order $p$-Laplacian difference equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 555-567. doi: 10.3934/dcdsb.2019254 [12] Hong Wang, Aijie Cheng, Kaixin Wang. Fast finite volume methods for space-fractional diffusion equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1427-1441. doi: 10.3934/dcdsb.2015.20.1427 [13] Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 903-920. doi: 10.3934/dcdsb.2021073 [14] Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems and Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014 [15] Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 339-357. doi: 10.3934/dcdss.2021025 [16] Na Peng, Jiayu Han, Jing An. An efficient finite element method and error analysis for fourth order problems in a spherical domain. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022021 [17] Jiantao Jiang, Jing An, Jianwei Zhou. A novel numerical method based on a high order polynomial approximation of the fourth order Steklov equation and its eigenvalue problems. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022066 [18] Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure and Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024 [19] Andrea L. Bertozzi, Ning Ju, Hsiang-Wei Lu. A biharmonic-modified forward time stepping method for fourth order nonlinear diffusion equations. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1367-1391. doi: 10.3934/dcds.2011.29.1367 [20] Nguyen Huy Tuan. Existence and limit problem for fractional fourth order subdiffusion equation and Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4551-4574. doi: 10.3934/dcdss.2021113

2021 Impact Factor: 1.865