Singular limit problems of reaction-diffusion systems have been studied in cases where the effects of the reaction terms are very large compared with those of the other terms. Such problems appear in literature in various fields such as chemistry, ecology, biology, geology and approximation theory. In this paper, we deal with the singular limit of a general reaction-diffusion system including many problems in the literature. We formulate the problem, derive the limit equation and establish a rigorous mathematical theory.
Citation: |
Figure 1. Level sets $ F(u,v) = 0 $, which are the graphs $ \{ (u,v)\ |\ v\in \alpha (u)\} $ (thick lines), and vector fields of (9) for some $ F $. (a) $ F(u,v) = F_2(u,-v) $ with $ F_2 $ of (8) (the limit of (1) is represented by the one-phase Stefan problem), (b) $ F $ of (11) with $ \beta $ of (10) (the limit of (1) is represented by the two-phase Stefan problem), (c) $ F $ of (11) with $ \beta $ of (12) (the limit of (1) is represented by the porous medium equation)
[1] |
D. Aronson, M. G. Crandall and L. A. Peletier, Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal, 6 (1982), 1001-1022.
doi: 10.1016/0362-546X(82)90072-4.![]() ![]() ![]() |
[2] |
D. Bothe and D. Hilhorst, A reaction-diffusion system with fast reversible reaction, J. Math. Anal. Appl., 286 (2003), 125-135.
doi: 10.1016/S0022-247X(03)00457-8.![]() ![]() ![]() |
[3] |
N. Bouillard, R. Eymard, M. Henry, R. Herbin and D. Hilhorst, A fast precipitation and dissolution reaction for a reaction-diffusion system arising in a porous medium, Nonlinear Anal. Real World Appl., 10 (2009), 629-638.
doi: 10.1016/j.nonrwa.2007.10.019.![]() ![]() ![]() |
[4] |
M. Conti, S. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math, 195 (2005), 524-560.
doi: 10.1016/j.aim.2004.08.006.![]() ![]() ![]() |
[5] |
J. Crank, Free and Moving Boundary Problems, Clarendon Press, Oxford, 1984.
![]() ![]() |
[6] |
E. N. Dancer, D. Hilhorst, M. Mimura and L. A. Peletier, Spatial segregation limit of a competition-diffusion system, European J. Appl. Math., 10 (1999), 97-115.
doi: 10.1017/S0956792598003660.![]() ![]() ![]() |
[7] |
J. Eliaš, M. H. Kabir and M. Mimura, On the well-posedness of a dispersal model for farmers and hunter-gatherers in the neolithic transition, Math. Models Methods Appl. Sci, 28 (2018), 195-222.
doi: 10.1142/S0218202518500069.![]() ![]() ![]() |
[8] |
L. C. Evans, A convergence theorem for a chemical diffusion-reaction system, Houston J. Math., 6 (1980), 259-267.
![]() ![]() |
[9] |
R. Eymard, D. Hilhorst, H. Murakawa and M. Olech, Numerical approximation of a reaction-diffusion system with fast reversible reaction, Chinese Annals of Mathematics B, 31 (2010), 631-654.
doi: 10.1007/s11401-010-0604-5.![]() ![]() ![]() |
[10] |
R. Eymard, D. Hilhorst, R. van der Hout and L. A. Peletier, A reaction-diffusion system approximation of a one-phase Stefan problem, Optimal Control and Partial Differential Equations, IOS, Amsterdam, (2001), 156–170.
![]() ![]() |
[11] |
D. Hilhorst, M. Iida, M. Mimura and H. Ninomiya, A competition-diffusion system approximation to the classical two-phase stefan problem, Japan J. Indust. Appl. Math., 18 (2001), 161-180.
doi: 10.1007/BF03168569.![]() ![]() ![]() |
[12] |
D. Hilhorst, J. R. King and M. Röger, Mathematical analysis of a model describing the invasion of bacteria in burn wounds, Nonlinear Anal., 66 (2007), 1118-1140.
doi: 10.1016/j.na.2006.01.009.![]() ![]() ![]() |
[13] |
D. Hilhorst and H. Murakawa, Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium, Netw. Heterog. Media, 9 (2014), 669-682.
doi: 10.3934/nhm.2014.9.669.![]() ![]() ![]() |
[14] |
M. Iida, H. Monobe, H. Murakawa and H. Ninomiya, Vanishing, moving and immovable interfaces in fast reaction limits, J. Differential Equations, 263 (2017), 2715-2735.
doi: 10.1016/j.jde.2017.04.009.![]() ![]() ![]() |
[15] |
M. Iida and H. Ninomiya, A reaction-diffusion approximation to a cross-diffusion system, Recent Advances on Elliptic and Parabolic Issues, eds. M. Chipot and H. Ninomiya, World Scientific, (2006), 145–164.
![]() |
[16] |
M. Iida, H. Ninomiya and H. Yamamoto, A review on reaction-diffusion approximation, J. Elliptic Parabol. Equ., 4 (2018), 565-600.
doi: 10.1007/s41808-018-0029-y.![]() ![]() ![]() |
[17] |
J. W. Jerome, Approximation of Nonlinear Evolution Systems, Academic Press, New York, 1983.
![]() ![]() |
[18] |
S. Jimbo and Y. Morita, Lyapunov function and spectrum comparison for a reaction-diffusion system with mass conservation, J. Differential Equations, 255 (2013), 1657-1683.
doi: 10.1016/j.jde.2013.05.021.![]() ![]() ![]() |
[19] |
P. Knabner, Mathematische Modelle für Transport und Sorption gelöster Stoffe in porösen Medien, Verlag Peter Lang, Frankfurt, 1991.
![]() ![]() |
[20] |
Y. Morita and T. Ogawa, Stability and bifurcation of nonconstant solutions to a reaction-diffusion system with conservation of mass, Nonlinearity, 23 (2010), 1387-1411.
doi: 10.1088/0951-7715/23/6/007.![]() ![]() ![]() |
[21] |
A. Moussa, B. Perthame and D. Salort, Backward parabolicity, cross-diffusion and turing instability, J. Nonlinear Sci., 29 (2019), 139-162.
doi: 10.1007/s00332-018-9480-z.![]() ![]() ![]() |
[22] |
H. Murakawa, Reaction-diffusion system approximation to degenerate parabolic systems, Nonlinearity, 20 (2007), 2319-2332.
doi: 10.1088/0951-7715/20/10/003.![]() ![]() ![]() |
[23] |
H. Murakawa, A regularization of a reaction-diffusion system approximation to the two-phase Stefan problem, Nonlinear Anal., 69 (2008), 3512-3524.
doi: 10.1016/j.na.2007.09.038.![]() ![]() ![]() |
[24] |
H. Murakawa, A relation between cross-diffusion and reaction-diffusion, Discrete Contin. Dyn. Syst. S, 5 (2012), 147-158.
doi: 10.3934/dcdss.2012.5.147.![]() ![]() ![]() |
[25] |
H. Murakawa, A linear scheme to approximate nonlinear cross-diffusion systems, Math. Mod. Numer. Anal., 45 (2011), 1141-1161.
doi: 10.1051/m2an/2011010.![]() ![]() ![]() |
[26] |
H. Murakawa, An efficient linear scheme to approximate nonlinear diffusion problems, Jpn. J. Ind. Appl. Math., 35 (2018), 71-101.
doi: 10.1007/s13160-017-0279-3.![]() ![]() ![]() |
[27] |
H. Murakawa and H. Ninomiya, Fast reaction limit of a three-component reaction-diffusion system, J. Math. Anal. Appl., 379 (2011), 150-170.
doi: 10.1016/j.jmaa.2010.12.040.![]() ![]() ![]() |
[28] |
C. Verdi, Numerical aspects of parabolic free boundary and hysteresis problems, Lecture Notes in Mathematics, 1584 (1994), 213-284.
doi: 10.1007/BFb0073398.![]() ![]() ![]() |
[29] |
A. Visintin, Models of phase relaxation, Differential and Integral Equations, 14 (2001), 1469-1486.
![]() ![]() |
Level sets