Advanced Search
Article Contents
Article Contents

Global weak solutions for an newtonian fluid interacting with a Koiter type shell under natural boundary conditions

  • * Corresponding author: Michael Růžička

    * Corresponding author: Michael Růžička
Abstract Full Text(HTML) Figure(3) Related Papers Cited by
  • We consider a viscous, incompressible Newtonian fluid flowing through a thin elastic (non-cylindrical) structure. The motion of the structure is described by the equations of a linearised Koiter shell, whose motion is restricted to transverse displacements. The fluid and the structure are coupled by the continuity of velocities and an equilibrium of surface forces on the interface between fluid and structure. On a fixed in- and outflow region we prescribe natural boundary conditions. We show that weak solutions exist as long as the shell does not self-intersect.

    Mathematics Subject Classification: 76D05, 74F10.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Reference domain $ \Omega $ with in- and outflow region $ \Gamma $ and moving boundary $ M $

    Figure 2.  Notations for admissible in- and outflow domains and moving domains

    Figure 3.  Extension of the fluid domain

  • [1] G. AcostaR. G. Durán and F. López García, Korn inequality and divergence operator: counterexamples and optimality of weighted estimates, Proc. Amer. Math. Soc., 141 (2013), 217-232.  doi: 10.1090/S0002-9939-2012-11408-X.
    [2] C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis, 3rd edition, Springer, Berlin, 2006, A hitchhiker's guide.
    [3] H. Beirão da Veiga, On the existence of strong solutions to a coupled fluid-structure evolution problem, J. Math. Fluid Mech., 6 (2004), 21-52.  doi: 10.1007/s00021-003-0082-5.
    [4] J.-M. E. Bernard, Density results in Sobolev spaces whose elements vanish on a part of the boundary, Chin. Ann. Math. Ser. B, 32 (2011), 823-846.  doi: 10.1007/s11401-011-0682-z.
    [5] F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, vol. 183 of Applied Mathematical Sciences, Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.
    [6] H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions Dans Les Espaces de Hilbert, vol. 5 of North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1973.
    [7] R. M. Brown and Z. Shen, Estimates for the Stokes operator in Lipschitz domains, Indiana Univ. Math. J., 44 (1995), 1183-1206.  doi: 10.1512/iumj.1995.44.2025.
    [8] A. ChambolleB. DesjardinsM. J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech., 7 (2005), 368-404.  doi: 10.1007/s00021-004-0121-y.
    [9] P. G. Ciarlet, Mathematical Elasticity. Vol. Ⅲ, vol. 29 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 2000
    [10] P. G. Ciarlet, An Introduction to Differential Geometry with Applications to Elasticity, With a foreword by Roger Fosdick. J. Elasticity 78/79 no. 1-3 (2005). doi: 10.1007/s10659-005-4738-8.
    [11] G. Cokelet, The rheology and tube flow of blood, in Handbook of bioengineering (eds. R. Skalak and S. Chien), McGraw-Hill, New York, 1987.
    [12] D. Coutand and S. Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2006), 303-352.  doi: 10.1007/s00205-005-0385-2.
    [13] E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.
    [14] M. Dobrowolski, Angewandte Funktionalanalysis: Funktionalanalysis, Sobolev-Räume und Elliptische Differentialgleichungen, Springer-Lehrbuch Masterclass, Springer-Verlag, Berlin, 2006.
    [15] J. Droniou, Intégration et Espaces de Sobolev à Valeurs Vectorielles., 2001, URL https://hal.archives-ouvertes.fr/hal-01382368.
    [16] H. Eberlein, Globale Existenz Schwacher Lösungen für die Interaktion Eines Newtonschen Fluides mit Einer linearen, Transversalen Koiter-Schale unter Natürlichen Randbedingungen, PhD thesis, Albert-Ludwigs-Universität Freiburg im Breisgau, 2017.
    [17] E. B. FabesC. E. Kenig and G. C. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains, Duke Math. J., 57 (1988), 769-793.  doi: 10.1215/S0012-7094-88-05734-1.
    [18] C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, SIAM J. Math. Anal., 40 (2008), 716-737.  doi: 10.1137/070699196.
    [19] E.-i. Hanzawa, Classical solutions of the Stefan problem, Tôhoku Math. J., 33 (1981), 297-335.  doi: 10.2748/tmj/1178229399.
    [20] T. KatoM. MitreaG. Ponce and M. Taylor, Extension and representation of divergence-free vector fields on bounded domains, Math. Res. Lett., 7 (2000), 643-650.  doi: 10.4310/MRL.2000.v7.n5.a10.
    [21] V. Lakshmikantham and M. Rama Mohana Rao, Theory of Integro-Differential Equations, vol. 1 of Stability and Control: Theory, Methods and Applications, Gordon and Breach Science Publishers, Lausanne, 1995.
    [22] D. Lengeler, Globale Existenz für Die Interaktion Eines Navier-Stokes-Fluids Mit Einer Linear Elastischen Schale, PhD thesis, Albert-Ludwigs-Universität Freiburg im Breisgau, 2011, Urn: nbn: de: bsz: 25-opus-84219.
    [23] D. Lengeler, Weak solutions for an incompressible, generalized Newtonian fluid interacting with a linearly elastic Koiter type shell, SIAM J. Math. Anal., 46 (2014), 2614-2649.  doi: 10.1137/130911299.
    [24] D. Lengeler and M. Růžička, Weak solutions for an incompressible Newtonian fluid interacting with a Koiter type shell, Arch. Ration. Mech. Anal., 211 (2014), 205-255.  doi: 10.1007/s00205-013-0686-9.
    [25] J. Lequeurre, Existence of strong solutions for a system coupling the Navier-Stokes equations and a damped wave equation, J. Math. Fluid Mech., 15 (2013), 249-271.  doi: 10.1007/s00021-012-0107-0.
    [26] J.-L. Lions, Quelques Méthodes de Résolution Des Problèmes aux Limites non Linéaires, Dunod; Gauthier-Villars, Paris, 1969.
    [27] J. Málek, J. Nečas, M. Rokyta and M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDEs, vol. 13 of Applied Mathematics and Mathematical Computation, Chapman & Hall, London, 1996.
    [28] J. E. Marsden and T. J. R. Hughes, Mathematical Foundations of Elasticity, Dover Publications, Inc., New York, 1994, Corrected reprint of the 1983 original.
    [29] N. Masmoudi and F. Rousset, Uniform regularity and vanishing viscosity limit for the free surface Navier-Stokes equations, Arch. Ration. Mech. Anal., 223 (2017), 301–417, URL https://doi.org/10.1007/s00205-016-1036-5. doi: 10.1007/s00205-016-1036-5.
    [30] B. Muha and S. Čanić, Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Arch. Ration. Mech. Anal., 207 (2013), 919-968.  doi: 10.1007/s00205-012-0585-5.
    [31] B. Muha and S. Čanić, A nonlinear, 3D fluid-structure interaction problem driven by the time-dependent dynamic pressure data: a constructive existence proof, Commun. Inf. Syst., 13 (2013), 357-397.  doi: 10.4310/CIS.2013.v13.n3.a4.
    [32] B. Muha and S. Čanić, Fluid-structure interaction between an incompressible, viscous 3D fluid and an elastic shell with nonlinear Koiter membrane energy, Interfaces Free Bound., 17 (2015), 465-495.  doi: 10.4171/IFB/350.
    [33] B. Muha and S. Čanić, Existence of a weak solution to a fluid-elastic structure interaction problem with the Navier slip boundary condition, J. Differential Equations, 260 (2016), 8550-8589.  doi: 10.1016/j.jde.2016.02.029.
    [34] A. QuarteroniM. Tuveri and A. Veneziani, Computational vascular fluid dynamics: problems, models and methods, Computing and Visualization in Science, 2 (2000), 163-197.  doi: 10.1007/s007910050039.
    [35] R. Russo, On Stokes' problem, in Advances in Mathematical Fluid Mechanics, Springer, Berlin, 2010,473–511. doi: 10.1007/978-3-642-04068-9_28.
    [36] Z. W. Shen, A note on the Dirichlet problem for the Stokes system in Lipschitz domains, Proc. Amer. Math. Soc., 123 (1995), 801-811.  doi: 10.1090/S0002-9939-1995-1223521-9.
    [37] H. Sohr, The Navier-Stokes Equations, An elementary functional analytic approach. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2001. doi: 10.1007/978-3-0348-8255-2.
    [38] M. E. Taylor, Partial Differential Equations I. Basic theory, vol. 115 of Applied Mathematical Sciences, Second edition edition, Springer, New York, 2011. doi: 10.1007/978-1-4419-7055-8.
    [39] R. Temam, Navier-Stokes Equations. Theory and numerical analysis, North-Holland Publishing Co., Amsterdam-New York, 1979, Studies in Mathematics and its Applications, Vol. 2.
  • 加载中
Open Access Under a Creative Commons license



Article Metrics

HTML views(1190) PDF downloads(394) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint