[1]
|
A. Akgül and D. Grow, Existence of solutions to the telegraph equation in binary reproducing kernel Hilbert spaces, Differential Equations and Dynamical Systems, (2019).
doi: 10.1007/s12591-019-00453-3.
|
[2]
|
A. Akgül, M. Inc and E. Karatas, Reproducing kernel functions for difference equations, Discret. Contin. Dyn. Syst. Ser. S, 8 (2015), 1055-1064.
doi: 10.3934/dcdss.2015.8.1055.
|
[3]
|
N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404.
doi: 10.2307/1990404.
|
[4]
|
A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos, Solitons and Fractals, 102 (2017), 396-406.
doi: 10.1016/j.chaos.2017.04.027.
|
[5]
|
A. Atangana and A. Akgül, On solutions of fractal fractional differential equations, Discret. Contin. Dyn. Syst. Ser. S.
doi: 10.3934/dcdss.2020421.
|
[6]
|
P. Bouboulis and M. Mavroforakis, Reproducing kernel Hilbert spaces and fractal interpolation, J. Comput. Appl. Math., 235 (2011), 3425-3434.
doi: 10.1016/j.cam.2011.02.003.
|
[7]
|
V. F. M. Delgado, J. F. G. Aguilar, H. Y. Martínez, D. Baleanu, R. F. E. Jimenez and V. H. O. Peregrino, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Adv. Differ. Equ., (2016), 164.
doi: 10.1186/s13662-016-0891-6.
|
[8]
|
J. Fahd and T. A. Abdeljawad, A modified Laplace transform for certain generalized fractional operators, Results Nonlinear Anal., 2 (2018), 88-98.
|
[9]
|
J. Fan and J. He, Fractal derivative model for air permeability in hierarchic porous media, Abstract and Applied Analysis, (2012).
doi: 10.1155/2012/354701.
|
[10]
|
H. K. Jassim, C. Ünlü, S. P. Moshokoa and C. M. Khalique, Local fractional Laplace variational iteration method for solving diffusion and wave equations on Cantor sets within local fractional operators, Math. Probl. Eng., (2015), 309870.
doi: 10.1155/2015/309870.
|
[11]
|
J. Liouville, Mémoire sur quelques qustions de géomerie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces quéstions, J.d'École Polytechnique, 1 (1832), 1–69.
|
[12]
|
A. Talbot, The accurate numerical inversion of laplace transforms, IMA J. Appl. Math., 23 (1979), 97-120.
|
[13]
|
M. Toufik and A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, The European Physical Journal Plus, 132 (2017), 444.
|
[14]
|
S. Xiang, Laplace transforms for approximation of highly oscillatory Volterra integral equations of the first kind, Appl. Math. Comput., 232 (2014), 944-954.
doi: 10.1016/j.amc.2014.01.054.
|
[15]
|
L. M. Yan, Modified homotopy perturbation method coupled with Laplace transform for fractional heat transfer and porous media equations, Therm. Sci., 17 (2013), 1409-1414.
|
[16]
|
X. J. Yang, Advanced Local Fractional Calculus and its Applications, World Science, New York, NY, USA, 2012.
|