February  2021, 14(2): 615-633. doi: 10.3934/dcdss.2020424

A mathematical model for marine dinoflagellates blooms

1. 

Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, LMAP, Pau, France

2. 

Université de Pau et des Pays de l'Adour, UPPA, CNRS, LMAP, Pau, France

Received  December 2019 Published  September 2020

We present a model for the life cycle of a dinoflagellate in order to describe blooms. We prove the mathematical well-posedness of the model and the possibility of extinction in finite time of the alga form meaning that the full population is under the cysts from.

Citation: M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 615-633. doi: 10.3934/dcdss.2020424
References:
[1]

D. Anderson, Alexandrium fundyense cyst dynamics in the Gulf of Maine, Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 52 (2005), 2522-2542.   Google Scholar

[2]

F. Boyer, Trace theorems and spatial continuity properties for the solutions of the transport equation, Differential Integral Equations, 18 (2005), 891-934.   Google Scholar

[3]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, 5, Evolution problems. I, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1.  Google Scholar

[4]

K. Flynn and D. McGillicuddy, Modelling Marine Harmful Algal Blooms: Current Status and Future Prospects, Harmful Algal Blooms: A Compendium Desk References, 3, John Wiley & Sons Ltd, 2018. Google Scholar

[5]

G. Gagneux and M. Madaune-Tort, Analyse Mathématique de Modèles Non Linéaires de L'ingénierie Pétrolière, Mathématiques & Applications (Berlin) [Mathematics & Applications], 22, Springer-Verlag, Berlin, 1996.  Google Scholar

[6]

O. Guibé, A. Mokrane, Y. Tahraoui and G. Vallet, Lewy-Stampacchia's inequality for a pseudomonotone parabolic problem, Adv. Nonlinear Anal., to appear. doi: 10.1515/anona-2020-0015.  Google Scholar

[7]

H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology, Springer Science, 2017. doi: 10.1007/978-981-10-0188-8.  Google Scholar

[8]

M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, A Pergamon Press Book, The Macmillan Co., New York, 1964.  Google Scholar

[9]

D. J. McGillicuddy, Models of harmful algal blooms: Conceptual, empirical, and numerical approaches, Journal of Marine Systems, 83 (2010), 105-105.   Google Scholar

[10]

H. Ruoying, D. J. McGillicuddy, B. Keafer and D. Anderson, Historic 2005 toxic bloom of Alexandrium fundyense in the western Gulf of Maine: 2. Coupled biophysical numerical modeling, Journal of Geophysical Research: Oceans, 113 (2008). Google Scholar

show all references

References:
[1]

D. Anderson, Alexandrium fundyense cyst dynamics in the Gulf of Maine, Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 52 (2005), 2522-2542.   Google Scholar

[2]

F. Boyer, Trace theorems and spatial continuity properties for the solutions of the transport equation, Differential Integral Equations, 18 (2005), 891-934.   Google Scholar

[3]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, 5, Evolution problems. I, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1.  Google Scholar

[4]

K. Flynn and D. McGillicuddy, Modelling Marine Harmful Algal Blooms: Current Status and Future Prospects, Harmful Algal Blooms: A Compendium Desk References, 3, John Wiley & Sons Ltd, 2018. Google Scholar

[5]

G. Gagneux and M. Madaune-Tort, Analyse Mathématique de Modèles Non Linéaires de L'ingénierie Pétrolière, Mathématiques & Applications (Berlin) [Mathematics & Applications], 22, Springer-Verlag, Berlin, 1996.  Google Scholar

[6]

O. Guibé, A. Mokrane, Y. Tahraoui and G. Vallet, Lewy-Stampacchia's inequality for a pseudomonotone parabolic problem, Adv. Nonlinear Anal., to appear. doi: 10.1515/anona-2020-0015.  Google Scholar

[7]

H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology, Springer Science, 2017. doi: 10.1007/978-981-10-0188-8.  Google Scholar

[8]

M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, A Pergamon Press Book, The Macmillan Co., New York, 1964.  Google Scholar

[9]

D. J. McGillicuddy, Models of harmful algal blooms: Conceptual, empirical, and numerical approaches, Journal of Marine Systems, 83 (2010), 105-105.   Google Scholar

[10]

H. Ruoying, D. J. McGillicuddy, B. Keafer and D. Anderson, Historic 2005 toxic bloom of Alexandrium fundyense in the western Gulf of Maine: 2. Coupled biophysical numerical modeling, Journal of Geophysical Research: Oceans, 113 (2008). Google Scholar

Figure 1.  Sketch of the parts of Alexandrium catenella life we are interested in
[1]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[2]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[3]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[4]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[5]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[6]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[7]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[8]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[9]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[10]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[11]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[12]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[13]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[14]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[15]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[16]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[17]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[18]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[19]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[20]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (93)
  • HTML views (160)
  • Cited by (0)

Other articles
by authors

[Back to Top]