# American Institute of Mathematical Sciences

February  2021, 14(2): 615-633. doi: 10.3934/dcdss.2020424

## A mathematical model for marine dinoflagellates blooms

 1 Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, LMAP, Pau, France 2 Université de Pau et des Pays de l'Adour, UPPA, CNRS, LMAP, Pau, France

Received  December 2019 Published  February 2021 Early access  September 2020

We present a model for the life cycle of a dinoflagellate in order to describe blooms. We prove the mathematical well-posedness of the model and the possibility of extinction in finite time of the alga form meaning that the full population is under the cysts from.

Citation: M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 615-633. doi: 10.3934/dcdss.2020424
##### References:

show all references

##### References:
Sketch of the parts of Alexandrium catenella life we are interested in
 [1] D. Bresch, T. Colin, M. Ghil, Shouhong Wang. Qualitative properties of some evolution equations. Discrete & Continuous Dynamical Systems, 2004, 11 (1) : i-ii. doi: 10.3934/dcds.2004.11.1i [2] Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology. Mathematical Biosciences & Engineering, 2006, 3 (4) : 571-582. doi: 10.3934/mbe.2006.3.571 [3] Akisato Kubo. Nonlinear evolution equations associated with mathematical models. Conference Publications, 2011, 2011 (Special) : 881-890. doi: 10.3934/proc.2011.2011.881 [4] N. Bellomo, A. Bellouquid. From a class of kinetic models to the macroscopic equations for multicellular systems in biology. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 59-80. doi: 10.3934/dcdsb.2004.4.59 [5] Patricio Felmer, Ying Wang. Qualitative properties of positive solutions for mixed integro-differential equations. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 369-393. doi: 10.3934/dcds.2019015 [6] Cory D. Hauck, Michael Herty, Giuseppe Visconti. Qualitative properties of mathematical model for data flow. Networks & Heterogeneous Media, 2021, 16 (4) : 513-533. doi: 10.3934/nhm.2021015 [7] Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053 [8] Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481 [9] Eugene Kashdan, Dominique Duncan, Andrew Parnell, Heinz Schättler. Mathematical methods in systems biology. Mathematical Biosciences & Engineering, 2016, 13 (6) : i-ii. doi: 10.3934/mbe.201606i [10] Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521 [11] Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345 [12] Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete & Continuous Dynamical Systems, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i [13] Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17 [14] Alina Gleska, Małgorzata Migda. Qualitative properties of solutions of higher order difference equations with deviating arguments. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 239-252. doi: 10.3934/dcdsb.2018016 [15] Xavier Cabré. Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations. Discrete & Continuous Dynamical Systems, 2002, 8 (2) : 331-359. doi: 10.3934/dcds.2002.8.331 [16] Monique Chyba, Benedetto Piccoli. Special issue on mathematical methods in systems biology. Networks & Heterogeneous Media, 2019, 14 (1) : i-ii. doi: 10.3934/nhm.20191i [17] Simona Fornaro, Ugo Gianazza. Local properties of non-negative solutions to some doubly non-linear degenerate parabolic equations. Discrete & Continuous Dynamical Systems, 2010, 26 (2) : 481-492. doi: 10.3934/dcds.2010.26.481 [18] Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 [19] Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401 [20] Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control & Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013

2020 Impact Factor: 2.425

## Metrics

• HTML views (167)
• Cited by (0)

• on AIMS