-
Previous Article
Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative
- DCDS-S Home
- This Issue
-
Next Article
Computational and numerical simulations for the deoxyribonucleic acid (DNA) model
On a nonlocal problem involving the fractional $ p(x,.) $-Laplacian satisfying Cerami condition
Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, Laboratory of Mathematical Analysis and Applications, Fez, Morocco, B.P. 1796 Fez-Atlas, 30003 MOROCCO |
The present paper deals with the existence and multiplicity of solutions for a class of fractional $ p(x,.) $-Laplacian problems with the nonlocal Dirichlet boundary data, where the nonlinearity is superlinear but does not satisfy the usual Ambrosetti-Rabinowitz condition. To overcome the difficulty that the Palais-Smale sequences of the Euler-Lagrange functional may be unbounded, we consider the Cerami sequences. The main results are established by means of mountain pass theorem and Fountain theorem with Cerami condition.
References:
[1] |
A. Ambrosetti and P. H. Rabinowitz,
Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-341.
doi: 10.1016/0022-1236(73)90051-7. |
[2] |
E. Azroul, A. Benkirane, M. Shimi and M. Srati, On a class of fractional $p(x)$-Kirchhoff type problems, Applicable Analysis, 2019 (2019).
doi: 10.1080/00036811.2019.1603372. |
[3] |
E. Azroul, A. Benkirane and M. Shimi,
Eigenvalue problems involving the fractional $p(x)$-Laplacian operator, Adv. Oper. Theory, 4 (2019), 539-555.
doi: 10.15352/aot.1809-1420. |
[4] |
E. Azroul, A. Benkirane, A. Boumazourh and M. Shimi, Existence results for fractional $p(x, .)$-Laplacian problem via the Nehari manifold approach, Applied Mathematics and Optimization, (2020).
doi: 10.1007/s00245-020-09686-z. |
[5] |
E. Azroul, A. Benkirane, A. Boumazourh and M. Srati, Three solutions for a nonlocal fractional $p$-Kirchhoff type elliptic system, Applicable Analysis, (2019).
doi: 10.1080/00036811.2019.1670347. |
[6] |
A. Bahrouni and V. Rǎdulescu,
On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent, Discrete Contin. Dyn. Syst. S, 11 (2018), 379-389.
doi: 10.3934/dcdss.2018021. |
[7] |
P. Bartolo, V. Benci and D. Fortunato,
Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal., 7 (1983), 981-1012.
doi: 10.1016/0362-546X(83)90115-3. |
[8] |
G. Cerami,
An existence criterion for the critical points on unbounded manifolds, Istit. Lombardo Accad. Sci. Lett. Rend., 112 (1978), 332-336.
|
[9] |
N. T. Chung and H. Q. Toan,
On a class of fractional Laplacian problems with variable exponents and indefinite weights, Collectanea Mathematica, 2019 (2019), 1-15.
doi: 10.1007/s13348-019-00254-5. |
[10] |
R. De La Llave and E. Valdinoci,
Symmetry for a Dirichlet Neumann problem arising in water waves, Math. Res. Lett., 16 (2009), 909-918.
doi: 10.4310/MRL.2009.v16.n5.a13. |
[11] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math, 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[12] |
X. L. Fan and D. Zhao,
On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl, 263 (2001), 424-446.
doi: 10.1006/jmaa.2000.7617. |
[13] |
F. Fang and S. Liu,
Nontrivial solutions of superlinear $p$-Laplacian equations, J. Math. Anal. Appl., 351 (2009), 138-146.
doi: 10.1016/j.jmaa.2008.09.064. |
[14] |
M. Fǎrcǎşeanu,
On an eigenvalue problem involving the fractional $(s, p)$-Laplacian, Fractional Calculus and Applied Analysis, 21 (2018), 94-103.
doi: 10.1515/fca-2018-0006. |
[15] |
L. Jeanjean,
On the existence of bounded Palais-Smale sequences and application to Landesman-lazer type problem set on $\mathbb{R^N}$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787-809.
doi: 10.1017/S0308210500013147. |
[16] |
U. Kaufmann, J. D. Rossi and R. Vidal,
Fractional Sobolev spaces with variable exponents and fractional $p(x)$-Laplacians, Elec. J. Qual. Theor. Diff. Equa., 76 (2017), 1-10.
doi: 10.14232/ejqtde.2017.1.76. |
[17] |
O. Kováčik and J. Rákosník, On Spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, Czechoslovak Math. J., 41 (1991), 592–618, https://dml.cz/handle/10338.dmlcz/102493. |
[18] |
M. Kwasnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20, (2017), 7–51.
doi: 10.1515/fca-2017-0002. |
[19] |
N. Lam and G. Lu,
Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition, J. Geom. Anal., 24 (2014), 118-143.
doi: 10.1007/s12220-012-9330-4. |
[20] |
N Laskin,
Fractional quantum mechanics and Lévy path integrals, Phys. Lett., 268 (2000), 298-305.
doi: 10.1016/S0375-9601(00)00201-2. |
[21] |
Y. Sire and E. Valdinoci,
Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.
doi: 10.1016/j.jfa.2009.01.020. |
[22] |
L. Vlahos, H. Isliker, Y. Kominis and K. Hizonidis, Normal and anomalous diffusion: A tutorial, in Order and Chaos (ed. T. Bountis), Patras University Press, 10, 2008, https://arxiv.org/pdf/0805.0419.pdf. |
[23] |
A. Zang,
$p(x)$-Laplacian equations satisfying Cerami condition, J. Math. Anal. Appl., 337 (2008), 547-555.
doi: 10.1016/j.jmaa.2007.04.007. |
[24] |
Q. Zhang and C. Zhao,
Existence of strong solutions of a $p(x)$-Laplacian Dirichlet problem without the Ambrosetti-Rabinowitz condition, Comput. Math. Appl., 69 (2015), 1-12.
doi: 10.1016/j.camwa.2014.10.022. |
[25] |
W. Zou,
Variant fountain theorems and their applications, Manuscripta Math., 104 (2001), 343-358.
doi: 10.1007/s002290170032. |
show all references
References:
[1] |
A. Ambrosetti and P. H. Rabinowitz,
Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-341.
doi: 10.1016/0022-1236(73)90051-7. |
[2] |
E. Azroul, A. Benkirane, M. Shimi and M. Srati, On a class of fractional $p(x)$-Kirchhoff type problems, Applicable Analysis, 2019 (2019).
doi: 10.1080/00036811.2019.1603372. |
[3] |
E. Azroul, A. Benkirane and M. Shimi,
Eigenvalue problems involving the fractional $p(x)$-Laplacian operator, Adv. Oper. Theory, 4 (2019), 539-555.
doi: 10.15352/aot.1809-1420. |
[4] |
E. Azroul, A. Benkirane, A. Boumazourh and M. Shimi, Existence results for fractional $p(x, .)$-Laplacian problem via the Nehari manifold approach, Applied Mathematics and Optimization, (2020).
doi: 10.1007/s00245-020-09686-z. |
[5] |
E. Azroul, A. Benkirane, A. Boumazourh and M. Srati, Three solutions for a nonlocal fractional $p$-Kirchhoff type elliptic system, Applicable Analysis, (2019).
doi: 10.1080/00036811.2019.1670347. |
[6] |
A. Bahrouni and V. Rǎdulescu,
On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent, Discrete Contin. Dyn. Syst. S, 11 (2018), 379-389.
doi: 10.3934/dcdss.2018021. |
[7] |
P. Bartolo, V. Benci and D. Fortunato,
Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal., 7 (1983), 981-1012.
doi: 10.1016/0362-546X(83)90115-3. |
[8] |
G. Cerami,
An existence criterion for the critical points on unbounded manifolds, Istit. Lombardo Accad. Sci. Lett. Rend., 112 (1978), 332-336.
|
[9] |
N. T. Chung and H. Q. Toan,
On a class of fractional Laplacian problems with variable exponents and indefinite weights, Collectanea Mathematica, 2019 (2019), 1-15.
doi: 10.1007/s13348-019-00254-5. |
[10] |
R. De La Llave and E. Valdinoci,
Symmetry for a Dirichlet Neumann problem arising in water waves, Math. Res. Lett., 16 (2009), 909-918.
doi: 10.4310/MRL.2009.v16.n5.a13. |
[11] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math, 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[12] |
X. L. Fan and D. Zhao,
On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl, 263 (2001), 424-446.
doi: 10.1006/jmaa.2000.7617. |
[13] |
F. Fang and S. Liu,
Nontrivial solutions of superlinear $p$-Laplacian equations, J. Math. Anal. Appl., 351 (2009), 138-146.
doi: 10.1016/j.jmaa.2008.09.064. |
[14] |
M. Fǎrcǎşeanu,
On an eigenvalue problem involving the fractional $(s, p)$-Laplacian, Fractional Calculus and Applied Analysis, 21 (2018), 94-103.
doi: 10.1515/fca-2018-0006. |
[15] |
L. Jeanjean,
On the existence of bounded Palais-Smale sequences and application to Landesman-lazer type problem set on $\mathbb{R^N}$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787-809.
doi: 10.1017/S0308210500013147. |
[16] |
U. Kaufmann, J. D. Rossi and R. Vidal,
Fractional Sobolev spaces with variable exponents and fractional $p(x)$-Laplacians, Elec. J. Qual. Theor. Diff. Equa., 76 (2017), 1-10.
doi: 10.14232/ejqtde.2017.1.76. |
[17] |
O. Kováčik and J. Rákosník, On Spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, Czechoslovak Math. J., 41 (1991), 592–618, https://dml.cz/handle/10338.dmlcz/102493. |
[18] |
M. Kwasnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20, (2017), 7–51.
doi: 10.1515/fca-2017-0002. |
[19] |
N. Lam and G. Lu,
Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition, J. Geom. Anal., 24 (2014), 118-143.
doi: 10.1007/s12220-012-9330-4. |
[20] |
N Laskin,
Fractional quantum mechanics and Lévy path integrals, Phys. Lett., 268 (2000), 298-305.
doi: 10.1016/S0375-9601(00)00201-2. |
[21] |
Y. Sire and E. Valdinoci,
Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.
doi: 10.1016/j.jfa.2009.01.020. |
[22] |
L. Vlahos, H. Isliker, Y. Kominis and K. Hizonidis, Normal and anomalous diffusion: A tutorial, in Order and Chaos (ed. T. Bountis), Patras University Press, 10, 2008, https://arxiv.org/pdf/0805.0419.pdf. |
[23] |
A. Zang,
$p(x)$-Laplacian equations satisfying Cerami condition, J. Math. Anal. Appl., 337 (2008), 547-555.
doi: 10.1016/j.jmaa.2007.04.007. |
[24] |
Q. Zhang and C. Zhao,
Existence of strong solutions of a $p(x)$-Laplacian Dirichlet problem without the Ambrosetti-Rabinowitz condition, Comput. Math. Appl., 69 (2015), 1-12.
doi: 10.1016/j.camwa.2014.10.022. |
[25] |
W. Zou,
Variant fountain theorems and their applications, Manuscripta Math., 104 (2001), 343-358.
doi: 10.1007/s002290170032. |
[1] |
Mohamed Karim Hamdani, Lamine Mbarki, Mostafa Allaoui, Omar Darhouche, Dušan D. Repovš. Existence and multiplicity of solutions involving the $ p(x) $-Laplacian equations: On the effect of two nonlocal terms. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022129 |
[2] |
VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure and Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003 |
[3] |
Lujuan Yu. The asymptotic behaviour of the $ p(x) $-Laplacian Steklov eigenvalue problem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2621-2637. doi: 10.3934/dcdsb.2020025 |
[4] |
Jinguo Zhang, Dengyun Yang. Fractional $ p $-sub-Laplacian operator problem with concave-convex nonlinearities on homogeneous groups. Electronic Research Archive, 2021, 29 (5) : 3243-3260. doi: 10.3934/era.2021036 |
[5] |
Dorota Bors. Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 29-43. doi: 10.3934/dcdsb.2018003 |
[6] |
Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 229-243. doi: 10.3934/dcdss.2021029 |
[7] |
Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control and Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030 |
[8] |
Alessio Fiscella. Schrödinger–Kirchhoff–Hardy $ p $–fractional equations without the Ambrosetti–Rabinowitz condition. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1993-2007. doi: 10.3934/dcdss.2020154 |
[9] |
Phuong Le. Symmetry of singular solutions for a weighted Choquard equation involving the fractional $ p $-Laplacian. Communications on Pure and Applied Analysis, 2020, 19 (1) : 527-539. doi: 10.3934/cpaa.2020026 |
[10] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure and Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293 |
[11] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3851-3863. doi: 10.3934/dcdss.2020445 |
[12] |
Simone Creo, Maria Rosaria Lancia, Paola Vernole. Transmission problems for the fractional $ p $-Laplacian across fractal interfaces. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022047 |
[13] |
Silvia Frassu. Nonlinear Dirichlet problem for the nonlocal anisotropic operator $ L_K $. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1847-1867. doi: 10.3934/cpaa.2019086 |
[14] |
K. D. Chu, D. D. Hai. Positive solutions for the one-dimensional singular superlinear $ p $-Laplacian problem. Communications on Pure and Applied Analysis, 2020, 19 (1) : 241-252. doi: 10.3934/cpaa.2020013 |
[15] |
Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4805-4821. doi: 10.3934/dcds.2021058 |
[16] |
Fang Liu. The eigenvalue problem for a class of degenerate operators related to the normalized $ p $-Laplacian. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2701-2720. doi: 10.3934/dcdsb.2021155 |
[17] |
Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091 |
[18] |
Xiaohui Zhang, Xuping Zhang. Upper semi-continuity of non-autonomous fractional stochastic $ p $-Laplacian equation driven by additive noise on $ \mathbb{R}^n $. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022081 |
[19] |
Mihai Mihăilescu, Julio D. Rossi. Monotonicity with respect to $ p $ of the First Nontrivial Eigenvalue of the $ p $-Laplacian with Homogeneous Neumann Boundary Conditions. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4363-4371. doi: 10.3934/cpaa.2020198 |
[20] |
Aleksander Denisiuk. On range condition of the tensor x-ray transform in $ \mathbb R^n $. Inverse Problems and Imaging, 2020, 14 (3) : 423-435. doi: 10.3934/ipi.2020020 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]