[1]
|
K. Akakura, N. Bruchovsky, S. L. Goldenberg, P. S. Rennie, A. R. Buckley and L. D. Sullivan, Effects of intermittent androgen suppression on androgen-dependent tumors. Apoptosis and serum prostate-specific antigen, Cancer, 71 (1993), 2782-2790.
doi: 10.1002/1097-0142(19930501)71:9<2782::AID-CNCR2820710916>3.0.CO;2-Z.
|
[2]
|
A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model, preprint, (2016), arXiv: 1602.03408.
|
[3]
|
A. Atangana and T. Mekkaoui, Capturing complexities with composite operator and differential operators with non-singular kernel, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (2019), 023103, 15 pp.
doi: 10.1063/1.5085927.
|
[4]
|
A. Atangana and S. Jain, The role of power decay, exponential decay and Mittag–Leffler functions waiting time distribution: Application of cancer spread, Physica A: Statistical Mechanics and its Applications, 512 (2018), 330-351.
doi: 10.1016/j.physa.2018.08.033.
|
[5]
|
R. R. Berges, J. Vukanovic, J. I. Epstein, M. CarMichel, L. Cisek, D. E. Johnson, R. W. Veltri, P. C. Walsh and and J. T. Isaacs, Implication of cell kinetic changes during the progression of human prostatic cancer, Clinical Cancer Research, 1 (1995), 473-480.
|
[6]
|
N. Bruchovsky, L. Klotz, J. Crook, N. Phillips, J. Abersbach and S. L. Goldenberg, Quality of life, morbidity, and mortality results of a prospective phase ii study of intermittent androgen suppression for men with evidence of prostate-specific antigen relapse after radiation therapy for locally advanced prostate cancer, Clinical Genitourinary Cancer, 6 (2008), 46-52.
|
[7]
|
S. E. Eikenberry, J. D. Nagy and Y. Kuang, The evolutionary impact of androgen levels on prostate cancer in a multi-scale mathematical model, Biology Direct, 5 (2010), Art. No. 24.
doi: 10.1186/1745-6150-5-24.
|
[8]
|
M. M. El-Dessoky and M. A. Khan, Application of fractional calculus to combined modified function projective synchronization of different systems, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (2019), 013107.
doi: 10.1063/1.5079955.
|
[9]
|
B. J. Feldman and D. Feldman, The development of androgen-independent prostate cancer, Nature Reviews Cancer, 1 (2001), 34-45.
doi: 10.1038/35094009.
|
[10]
|
C. A. Heinlein and C. Chang, Androgen receptor in prostate cancer, Endocrine Reviews, 25 (2004), 276-308.
doi: 10.1210/er.2002-0032.
|
[11]
|
J. Holzbeierlein, P. Lal, E. LaTulippe, A. Smith, J. Satagopan and et al., Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance, The American Journal of Pathology, 164 (2004), 217-227.
doi: 10.1016/S0002-9440(10)63112-4.
|
[12]
|
A. M. Ideta, G. Tanaka, T. Takeuchi, and K. Aihara, A mathematical model of intermittent androgen suppression for prostate cancer, Journal of Nonlinear Science, 18 (2008), Art. No. 593.
doi: 10.1007/s00332-008-9031-0.
|
[13]
|
H. V. Jain, S. K. Clinton, A. Bhinder and and A. Friedman, Mathematical modeling of prostate cancer progression in response to androgen ablation therapy, Proceedings of the National Academy of Sciences, 108 (2011), 19701-19706.
doi: 10.3934/dcdsb.2013.18.945.
|
[14]
|
M. A. Khan, S. Ullah, K. O. Okosun and K. Shah, A fractional order pine wilt disease model with Caputo–Fabrizio derivative, Advances in Difference Equations, (2018), Paper No. 410, 18 pp.
doi: 10.1186/s13662-018-1868-4.
|
[15]
|
M. A. Khan, S. Ullah and and M. Farooq, A new fractional model for tuberculosis with relapse via Atangana–Baleanu derivative, Chaos, Solitons & Fractals, 116 (2018), 227-238.
doi: 10.1016/j.chaos.2018.09.039.
|
[16]
|
G. Lorenzo, M. A. Scott, K. Tew, T. J. R. Hughes, Y. J. Zhang, L. Liu, G. Vilanova, and H. Gomez, Tissue-scale, personalized modeling and simulation of prostate cancer growth, Proceedings of the National Academy of Sciences, 113 (2016), E7663–E7671.
doi: 10.1073/pnas.1615791113.
|
[17]
|
V. F. Morales-Delgado, J. F. Gómez-Aguilar, K. M. Saad, M. A. Khan and and P. Agarwal, Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: A fractional calculus approach, Physica A: Statistical Mechanics and its Applications, 523 (2019), 48-65.
doi: 10.1016/j.physa.2019.02.018.
|
[18]
|
P. S. Nelson, Molecular states underlying androgen receptor activation: A framework for therapeutics targeting androgen signaling in prostate cancer, Journal of Clinical Oncology, 30 (2011), 644-646.
doi: 10.1200/JCO.2011.39.1300.
|
[19]
|
I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, in Mathematics in Science and Engineering, Vol. 198, Academic Press Inc., San Diego, CA, 1999.
|
[20]
|
T. Portz, Y. Kuang and J. D. Nagy, A clinical data validated mathematical model of prostate cancer growth under intermittent androgen suppression therapy, AIP Advances, 2 (2012), 011002.
doi: 10.1063/1.3697848.
|
[21]
|
M. H. Rashid and U. B. Chaudhary, Intermittent androgen deprivation therapy for prostate cancer, The Oncologist, 9 (2004), 295-301.
doi: 10.1634/theoncologist.9-3-295.
|
[22]
|
G. Tanaka, Y. Hirata, S. L. Goldenberg, N. Bruchovsky and K. Aihara, Mathematical modelling of prostate cancer growth and its application to hormone therapy, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368 (2010), 5029-5044.
doi: 10.1098/rsta.2010.0221.
|
[23]
|
M. Toufik and A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, The European Physical Journal Plus, 132 (2017), Art. No. 444.
doi: 10.1140/epjp/i2017-11717-0.
|
[24]
|
S. Ullah, M. A. Khan and and M. Farooq, A fractional model for the dynamics of TB virus, Chaos, Solitons & Fractals, 116 (2018), 63-71.
doi: 10.1016/j.chaos.2018.09.001.
|
[25]
|
S. Ullah, M. A. Khan, and M. Farooq, A new fractional model for the dynamics of the hepatitis b virus using the caputo-fabrizio derivative, The European Physical Journal Plus, 133 (2018), Art. No. 237.
doi: 10.1140/epjp/i2018-12072-4.
|