• Previous Article
    Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection
  • DCDS-S Home
  • This Issue
  • Next Article
    Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative
October  2021, 14(10): 3529-3539. doi: 10.3934/dcdss.2020432

On the fuzzy stability results for fractional stochastic Volterra integral equation

a. 

School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran

b. 

Institute for Groundwater Studies (IGS) Faculty: Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa

* Corresponding author: Reza Saadati (email:rsaadati@eml.cc), https://orcid.org/0000-0002-6770-6951

Received  October 2019 Revised  February 2020 Published  October 2021 Early access  November 2020

By a fuzzy controller function, we stable a random operator associated with a type of fractional stochastic Volterra integral equations. Using the fixed point technique, we get an approximation for the mentioned random operator by a solution of the fractional stochastic Volterra integral equation.

Citation: Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3529-3539. doi: 10.3934/dcdss.2020432
References:
[1]

R. P. Agarwal, R. Saadati and A. Salamati, Approximation of the multiplicatives on random multi-normed space, Journal of inequalities and applications, 204 (2017), 204. doi: 10.1186/s13660-017-1478-9.

[2]

T. Bag and S. K. Samanta, Finite dimensional intuitionistic fuzzy normed linear spaces, Ann. Fuzzy Math. Inform, 6 (2013), 45-57. 

[3]

Y. J. Cho, T. M. Rassias and R. Saadati, Stability of functional equations in random normed spaces, Springer Optimization and Its Applications, 86, Springer, New York, 2013. doi: 10.1007/978-1-4614-8477-6.

[4]

C. D. ConstantinescuJ. M. Ramirez and W. R. Zhu, An application of fractional differential equations to risk theory, Finance and Stochastics, 23 (2019), 1001-1024.  doi: 10.1007/s00780-019-00400-8.

[5]

L. Cădariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math, 4 (2003), 4.

[6]

J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bulletin of the American Mathematical Society, 74 (1968), 305-309.  doi: 10.1090/S0002-9904-1968-11933-0.

[7]

M. A. El-MoneamF. Tarek Ibrahim and S. Elamody, Stability of a fractional difference equation of high order, Journal of Nonlinear Sciences and Applications, 12 (2019), 65-74.  doi: 10.22436/jnsa.012.02.01.

[8]

A. M. A. El-Sayed and F.M. Gaafar, Positive solutions of singular Hadamard-type fractional differential equations with infinite-point boundary conditions or integral boundary conditions, Advances in Difference Equations, 2019 (2019), 382. doi: 10.1186/s13662-019-2315-x.

[9]

O. Hadžić and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001. doi: 10.1007/978-94-017-1560-7.

[10]

J. JiangD. O'ReganJ. Xu and Z. Fu, Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions, Journal of Inequalities and Applications, 2019 (2019), 1-18.  doi: 10.1186/s13660-019-2156-x.

[11]

S. Jung, A fixed point approach to the stability of differential equations $y^{'} = F (x, y)$, Bulletin of the Malaysian Mathematical Sciences Society, 33 (2010).

[12]

S. M. Jung, A fixed point approach to the stability of an integral equation related to the wave equation, in Abstract and Applied Analysis, 2013, Hindawi, 2013. doi: 10.1155/2013/612576.

[13]

H. KhanT. AbdeljawadM. AslamR. A. Khan and A. Khan, Existence of positive solution and Hyers–Ulam stability for a nonlinear singular-delay-fractional differential equation, Advances in Difference Equations, 2019 (2019), 1-13.  doi: 10.1186/s13662-019-2054-z.

[14]

H. KhanF. JaradT. Abdeljawad and A. Khan, A singular ABC-fractional differential equation with $p$-Laplacian operator, Chaos, Solitons & Fractals, 129 (2019), 56-61.  doi: 10.1016/j.chaos.2019.08.017.

[15]

H. Khan, A. Khan, T. Abdeljawad and A. Alkhazzan, Existence results in Banach space for a nonlinear impulsive system, Advances in Difference Equations, 2019 (2019), 18. doi: 10.1186/s13662-019-1965-z.

[16]

A. KhanH. KhanJ. F. Gómez-Aguilar and T. Abdeljawad, Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos, Solitons & Fractals, 127 (2019), 422-427.  doi: 10.1016/j.chaos.2019.07.026.

[17]

H. Khan, A. Khan, F. Jarad and A. Shah, Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system, Chaos, Solitons & Fractals, (2019), 109477. doi: 10.1016/j.chaos.2019.109477.

[18]

Y. Ma and W. Li, Application and research of fractional differential equations in dynamic analysis of supply chain financial chaotic system, Chaos, Solitons & Fractals, 130 (2020), 109417. doi: 10.1016/j.chaos.2019.109417.

[19]

D. Miheţ and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, Journal of mathematical Analysis and Applications, 343 (2008), 567-572.  doi: 10.1016/j.jmaa.2008.01.100.

[20]

D. Miheţ and R. Saadati, On the stability of the additive Cauchy functional equation in random normed spaces, Applied mathematics letters, 24 (2011), 2005-2009.  doi: 10.1016/j.aml.2011.05.033.

[21]

A. K. Mirmostafaee, Perturbation of generalized derivations in fuzzy Menger normed algebras, Fuzzy sets and systems, 195 (2012), 109-117.  doi: 10.1016/j.fss.2011.10.015.

[22]

H. K. Nashine and R. W. Ibrahim, Symmetric solutions of nonlinear fractional integral equations via a new fixed point theorem under FG-contractive condition, Numerical Functional Analysis and Optimization, 40 (2019), 1448-1466.  doi: 10.1080/01630563.2019.1602779.

[23]

S. NadabanT. Binzar and F. Pater, Some fixed point theorems for $\varphi$-contractive mappings in fuzzy normed linear spaces, Journal of Nonlinear Sciences and Applications, 10 (2017), 5668-5676.  doi: 10.22436/jnsa.010.11.05.

[24]

R. Naeem and M. Anwar, Jessen type functionals and exponential convexity, J. Math. Comput. Sci, 17 (2017), 429-436.  doi: 10.22436/jmcs.017.03.08.

[25]

R. Naeem and M. Anwar, Weighted Jessen's functionals and exponential convexity, J. Math. Comput. Sci, 19 (2019), 171-180.  doi: 10.22436/jmcs.019.03.04.

[26]

C. ParkD. Y. ShinR. Saadati and J. R. Lee, A fixed point approach to the fuzzy stability of an AQCQ-functional equation, Filomat, 30 (2016), 1833-1851.  doi: 10.2298/FIL1607833P.

[27]

C. ParkS. O. Kim and C. Alaca, Stability of additive-quadratic rho-functional equations in Banach spaces: A fixed point approach, J. Nonlin. Sci. Appl., 10 (2017), 1252-1262.  doi: 10.22436/jnsa.010.03.34.

[28]

G. SadeghiM. Nazarianpoor and J. M. Rassias, Solution and stability of quattuorvigintic functional equation in intuitionistic fuzzy normed spaces, Iranian Journal of Fuzzy Systems, 15 (2018), 13-30. 

[29]

R. Saadati and S. M. Vaezpour, Some results on fuzzy Banach spaces, Journal of Applied Mathematics and Computing, 17 (2005), 475-484.  doi: 10.1007/BF02936069.

[30]

R. Saadati and C. Park, Approximation of derivations and the superstability in random Banach $\ast$-algebras, Advances in Difference Equations, 2018 (2018), 1-12.  doi: 10.1186/s13662-018-1882-6.

[31]

W. WeiX. Li and X. Li, New stability results for fractional integral equation, Computers & Mathematics with Applications, 64 (2012), 3468-3476.  doi: 10.1016/j.camwa.2012.02.057.

show all references

References:
[1]

R. P. Agarwal, R. Saadati and A. Salamati, Approximation of the multiplicatives on random multi-normed space, Journal of inequalities and applications, 204 (2017), 204. doi: 10.1186/s13660-017-1478-9.

[2]

T. Bag and S. K. Samanta, Finite dimensional intuitionistic fuzzy normed linear spaces, Ann. Fuzzy Math. Inform, 6 (2013), 45-57. 

[3]

Y. J. Cho, T. M. Rassias and R. Saadati, Stability of functional equations in random normed spaces, Springer Optimization and Its Applications, 86, Springer, New York, 2013. doi: 10.1007/978-1-4614-8477-6.

[4]

C. D. ConstantinescuJ. M. Ramirez and W. R. Zhu, An application of fractional differential equations to risk theory, Finance and Stochastics, 23 (2019), 1001-1024.  doi: 10.1007/s00780-019-00400-8.

[5]

L. Cădariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math, 4 (2003), 4.

[6]

J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bulletin of the American Mathematical Society, 74 (1968), 305-309.  doi: 10.1090/S0002-9904-1968-11933-0.

[7]

M. A. El-MoneamF. Tarek Ibrahim and S. Elamody, Stability of a fractional difference equation of high order, Journal of Nonlinear Sciences and Applications, 12 (2019), 65-74.  doi: 10.22436/jnsa.012.02.01.

[8]

A. M. A. El-Sayed and F.M. Gaafar, Positive solutions of singular Hadamard-type fractional differential equations with infinite-point boundary conditions or integral boundary conditions, Advances in Difference Equations, 2019 (2019), 382. doi: 10.1186/s13662-019-2315-x.

[9]

O. Hadžić and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001. doi: 10.1007/978-94-017-1560-7.

[10]

J. JiangD. O'ReganJ. Xu and Z. Fu, Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions, Journal of Inequalities and Applications, 2019 (2019), 1-18.  doi: 10.1186/s13660-019-2156-x.

[11]

S. Jung, A fixed point approach to the stability of differential equations $y^{'} = F (x, y)$, Bulletin of the Malaysian Mathematical Sciences Society, 33 (2010).

[12]

S. M. Jung, A fixed point approach to the stability of an integral equation related to the wave equation, in Abstract and Applied Analysis, 2013, Hindawi, 2013. doi: 10.1155/2013/612576.

[13]

H. KhanT. AbdeljawadM. AslamR. A. Khan and A. Khan, Existence of positive solution and Hyers–Ulam stability for a nonlinear singular-delay-fractional differential equation, Advances in Difference Equations, 2019 (2019), 1-13.  doi: 10.1186/s13662-019-2054-z.

[14]

H. KhanF. JaradT. Abdeljawad and A. Khan, A singular ABC-fractional differential equation with $p$-Laplacian operator, Chaos, Solitons & Fractals, 129 (2019), 56-61.  doi: 10.1016/j.chaos.2019.08.017.

[15]

H. Khan, A. Khan, T. Abdeljawad and A. Alkhazzan, Existence results in Banach space for a nonlinear impulsive system, Advances in Difference Equations, 2019 (2019), 18. doi: 10.1186/s13662-019-1965-z.

[16]

A. KhanH. KhanJ. F. Gómez-Aguilar and T. Abdeljawad, Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos, Solitons & Fractals, 127 (2019), 422-427.  doi: 10.1016/j.chaos.2019.07.026.

[17]

H. Khan, A. Khan, F. Jarad and A. Shah, Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system, Chaos, Solitons & Fractals, (2019), 109477. doi: 10.1016/j.chaos.2019.109477.

[18]

Y. Ma and W. Li, Application and research of fractional differential equations in dynamic analysis of supply chain financial chaotic system, Chaos, Solitons & Fractals, 130 (2020), 109417. doi: 10.1016/j.chaos.2019.109417.

[19]

D. Miheţ and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, Journal of mathematical Analysis and Applications, 343 (2008), 567-572.  doi: 10.1016/j.jmaa.2008.01.100.

[20]

D. Miheţ and R. Saadati, On the stability of the additive Cauchy functional equation in random normed spaces, Applied mathematics letters, 24 (2011), 2005-2009.  doi: 10.1016/j.aml.2011.05.033.

[21]

A. K. Mirmostafaee, Perturbation of generalized derivations in fuzzy Menger normed algebras, Fuzzy sets and systems, 195 (2012), 109-117.  doi: 10.1016/j.fss.2011.10.015.

[22]

H. K. Nashine and R. W. Ibrahim, Symmetric solutions of nonlinear fractional integral equations via a new fixed point theorem under FG-contractive condition, Numerical Functional Analysis and Optimization, 40 (2019), 1448-1466.  doi: 10.1080/01630563.2019.1602779.

[23]

S. NadabanT. Binzar and F. Pater, Some fixed point theorems for $\varphi$-contractive mappings in fuzzy normed linear spaces, Journal of Nonlinear Sciences and Applications, 10 (2017), 5668-5676.  doi: 10.22436/jnsa.010.11.05.

[24]

R. Naeem and M. Anwar, Jessen type functionals and exponential convexity, J. Math. Comput. Sci, 17 (2017), 429-436.  doi: 10.22436/jmcs.017.03.08.

[25]

R. Naeem and M. Anwar, Weighted Jessen's functionals and exponential convexity, J. Math. Comput. Sci, 19 (2019), 171-180.  doi: 10.22436/jmcs.019.03.04.

[26]

C. ParkD. Y. ShinR. Saadati and J. R. Lee, A fixed point approach to the fuzzy stability of an AQCQ-functional equation, Filomat, 30 (2016), 1833-1851.  doi: 10.2298/FIL1607833P.

[27]

C. ParkS. O. Kim and C. Alaca, Stability of additive-quadratic rho-functional equations in Banach spaces: A fixed point approach, J. Nonlin. Sci. Appl., 10 (2017), 1252-1262.  doi: 10.22436/jnsa.010.03.34.

[28]

G. SadeghiM. Nazarianpoor and J. M. Rassias, Solution and stability of quattuorvigintic functional equation in intuitionistic fuzzy normed spaces, Iranian Journal of Fuzzy Systems, 15 (2018), 13-30. 

[29]

R. Saadati and S. M. Vaezpour, Some results on fuzzy Banach spaces, Journal of Applied Mathematics and Computing, 17 (2005), 475-484.  doi: 10.1007/BF02936069.

[30]

R. Saadati and C. Park, Approximation of derivations and the superstability in random Banach $\ast$-algebras, Advances in Difference Equations, 2018 (2018), 1-12.  doi: 10.1186/s13662-018-1882-6.

[31]

W. WeiX. Li and X. Li, New stability results for fractional integral equation, Computers & Mathematics with Applications, 64 (2012), 3468-3476.  doi: 10.1016/j.camwa.2012.02.057.

[1]

Natalia Skripnik. Averaging of fuzzy integral equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1999-2010. doi: 10.3934/dcdsb.2017118

[2]

Mickaël D. Chekroun, Jean Roux. Homeomorphisms group of normed vector space: Conjugacy problems and the Koopman operator. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 3957-3980. doi: 10.3934/dcds.2013.33.3957

[3]

Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619

[4]

Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099

[5]

Yahia Zare Mehrjerdi. A novel methodology for portfolio selection in fuzzy multi criteria environment using risk-benefit analysis and fractional stochastic. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021019

[6]

Li Song, Yangrong Li, Fengling Wang. Controller and asymptotic autonomy of random attractors for stochastic p-Laplace lattice equations. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022010

[7]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3703-3718. doi: 10.3934/dcdss.2021020

[8]

George A. Anastassiou. Fractional Ostrowski-Sugeno Fuzzy univariate inequalities. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3305-3317. doi: 10.3934/dcdss.2020111

[9]

Seiyed Hadi Abtahi, Hamidreza Rahimi, Maryam Mosleh. Solving fuzzy volterra-fredholm integral equation by fuzzy artificial neural network. Mathematical Foundations of Computing, 2021, 4 (3) : 209-219. doi: 10.3934/mfc.2021013

[10]

Arzu Ahmadova, Nazim I. Mahmudov, Juan J. Nieto. Exponential stability and stabilization of fractional stochastic degenerate evolution equations in a Hilbert space: Subordination principle. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022008

[11]

Chao Wang, Zhien Li, Ravi P. Agarwal. Hyers-Ulam-Rassias stability of high-dimensional quaternion impulsive fuzzy dynamic equations on time scales. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 359-386. doi: 10.3934/dcdss.2021041

[12]

Anna Karczewska, Carlos Lizama. On stochastic fractional Volterra equations in Hilbert space. Conference Publications, 2007, 2007 (Special) : 541-550. doi: 10.3934/proc.2007.2007.541

[13]

Yung Chung Wang, Jenn Shing Wang, Fu Hsiang Tsai. Analysis of discrete-time space priority queue with fuzzy threshold. Journal of Industrial and Management Optimization, 2009, 5 (3) : 467-479. doi: 10.3934/jimo.2009.5.467

[14]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[15]

Jin-Zi Yang, Yuan-Xin Li, Ming Wei. Fuzzy adaptive asymptotic tracking of fractional order nonlinear systems with uncertain disturbances. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1615-1631. doi: 10.3934/dcdss.2021144

[16]

Jaydeep Swarnakar. Discrete-time realization of fractional-order proportional integral controller for a class of fractional-order system. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 309-320. doi: 10.3934/naco.2021007

[17]

Jiaquan Zhan, Fanyong Meng. Cores and optimal fuzzy communication structures of fuzzy games. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1187-1198. doi: 10.3934/dcdss.2019082

[18]

Xiaodong Liu, Wanquan Liu. The framework of axiomatics fuzzy sets based fuzzy classifiers. Journal of Industrial and Management Optimization, 2008, 4 (3) : 581-609. doi: 10.3934/jimo.2008.4.581

[19]

Juan J. Nieto, M. Victoria Otero-Espinar, Rosana Rodríguez-López. Dynamics of the fuzzy logistic family. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 699-717. doi: 10.3934/dcdsb.2010.14.699

[20]

İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics and Games, 2021, 8 (3) : 267-275. doi: 10.3934/jdg.2021010

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (241)
  • HTML views (371)
  • Cited by (0)

[Back to Top]