-
Previous Article
Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection
- DCDS-S Home
- This Issue
-
Next Article
Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative
On the fuzzy stability results for fractional stochastic Volterra integral equation
a. | School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran |
b. | Institute for Groundwater Studies (IGS) Faculty: Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa |
By a fuzzy controller function, we stable a random operator associated with a type of fractional stochastic Volterra integral equations. Using the fixed point technique, we get an approximation for the mentioned random operator by a solution of the fractional stochastic Volterra integral equation.
References:
[1] |
R. P. Agarwal, R. Saadati and A. Salamati, Approximation of the multiplicatives on random multi-normed space, Journal of inequalities and applications, 204 (2017), 204.
doi: 10.1186/s13660-017-1478-9. |
[2] |
T. Bag and S. K. Samanta,
Finite dimensional intuitionistic fuzzy normed linear spaces, Ann. Fuzzy Math. Inform, 6 (2013), 45-57.
|
[3] |
Y. J. Cho, T. M. Rassias and R. Saadati, Stability of functional equations in random normed spaces, Springer Optimization and Its Applications, 86, Springer, New York, 2013.
doi: 10.1007/978-1-4614-8477-6. |
[4] |
C. D. Constantinescu, J. M. Ramirez and W. R. Zhu,
An application of fractional differential equations to risk theory, Finance and Stochastics, 23 (2019), 1001-1024.
doi: 10.1007/s00780-019-00400-8. |
[5] |
L. Cădariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math, 4 (2003), 4. |
[6] |
J. B. Diaz and B. Margolis,
A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bulletin of the American Mathematical Society, 74 (1968), 305-309.
doi: 10.1090/S0002-9904-1968-11933-0. |
[7] |
M. A. El-Moneam, F. Tarek Ibrahim and S. Elamody,
Stability of a fractional difference equation of high order, Journal of Nonlinear Sciences and Applications, 12 (2019), 65-74.
doi: 10.22436/jnsa.012.02.01. |
[8] |
A. M. A. El-Sayed and F.M. Gaafar, Positive solutions of singular Hadamard-type fractional differential equations with infinite-point boundary conditions or integral boundary conditions, Advances in Difference Equations, 2019 (2019), 382.
doi: 10.1186/s13662-019-2315-x. |
[9] |
O. Hadžić and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001.
doi: 10.1007/978-94-017-1560-7. |
[10] |
J. Jiang, D. O'Regan, J. Xu and Z. Fu,
Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions, Journal of Inequalities and Applications, 2019 (2019), 1-18.
doi: 10.1186/s13660-019-2156-x. |
[11] |
S. Jung, A fixed point approach to the stability of differential equations $y^{'} = F (x, y)$, Bulletin of the Malaysian Mathematical Sciences Society, 33 (2010). |
[12] |
S. M. Jung, A fixed point approach to the stability of an integral equation related to the wave equation, in Abstract and Applied Analysis, 2013, Hindawi, 2013.
doi: 10.1155/2013/612576. |
[13] |
H. Khan, T. Abdeljawad, M. Aslam, R. A. Khan and A. Khan,
Existence of positive solution and Hyers–Ulam stability for a nonlinear singular-delay-fractional differential equation, Advances in Difference Equations, 2019 (2019), 1-13.
doi: 10.1186/s13662-019-2054-z. |
[14] |
H. Khan, F. Jarad, T. Abdeljawad and A. Khan,
A singular ABC-fractional differential equation with $p$-Laplacian operator, Chaos, Solitons & Fractals, 129 (2019), 56-61.
doi: 10.1016/j.chaos.2019.08.017. |
[15] |
H. Khan, A. Khan, T. Abdeljawad and A. Alkhazzan, Existence results in Banach space for a nonlinear impulsive system, Advances in Difference Equations, 2019 (2019), 18.
doi: 10.1186/s13662-019-1965-z. |
[16] |
A. Khan, H. Khan, J. F. Gómez-Aguilar and T. Abdeljawad,
Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos, Solitons & Fractals, 127 (2019), 422-427.
doi: 10.1016/j.chaos.2019.07.026. |
[17] |
H. Khan, A. Khan, F. Jarad and A. Shah, Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system, Chaos, Solitons & Fractals, (2019), 109477.
doi: 10.1016/j.chaos.2019.109477. |
[18] |
Y. Ma and W. Li, Application and research of fractional differential equations in dynamic analysis of supply chain financial chaotic system, Chaos, Solitons & Fractals, 130 (2020), 109417.
doi: 10.1016/j.chaos.2019.109417. |
[19] |
D. Miheţ and V. Radu,
On the stability of the additive Cauchy functional equation in random normed spaces, Journal of mathematical Analysis and Applications, 343 (2008), 567-572.
doi: 10.1016/j.jmaa.2008.01.100. |
[20] |
D. Miheţ and R. Saadati,
On the stability of the additive Cauchy functional equation in random normed spaces, Applied mathematics letters, 24 (2011), 2005-2009.
doi: 10.1016/j.aml.2011.05.033. |
[21] |
A. K. Mirmostafaee,
Perturbation of generalized derivations in fuzzy Menger normed algebras, Fuzzy sets and systems, 195 (2012), 109-117.
doi: 10.1016/j.fss.2011.10.015. |
[22] |
H. K. Nashine and R. W. Ibrahim,
Symmetric solutions of nonlinear fractional integral equations via a new fixed point theorem under FG-contractive condition, Numerical Functional Analysis and Optimization, 40 (2019), 1448-1466.
doi: 10.1080/01630563.2019.1602779. |
[23] |
S. Nadaban, T. Binzar and F. Pater,
Some fixed point theorems for $\varphi$-contractive mappings in fuzzy normed linear spaces, Journal of Nonlinear Sciences and Applications, 10 (2017), 5668-5676.
doi: 10.22436/jnsa.010.11.05. |
[24] |
R. Naeem and M. Anwar,
Jessen type functionals and exponential convexity, J. Math. Comput. Sci, 17 (2017), 429-436.
doi: 10.22436/jmcs.017.03.08. |
[25] |
R. Naeem and M. Anwar,
Weighted Jessen's functionals and exponential convexity, J. Math. Comput. Sci, 19 (2019), 171-180.
doi: 10.22436/jmcs.019.03.04. |
[26] |
C. Park, D. Y. Shin, R. Saadati and J. R. Lee,
A fixed point approach to the fuzzy stability of an AQCQ-functional equation, Filomat, 30 (2016), 1833-1851.
doi: 10.2298/FIL1607833P. |
[27] |
C. Park, S. O. Kim and C. Alaca,
Stability of additive-quadratic rho-functional equations in Banach spaces: A fixed point approach, J. Nonlin. Sci. Appl., 10 (2017), 1252-1262.
doi: 10.22436/jnsa.010.03.34. |
[28] |
G. Sadeghi, M. Nazarianpoor and J. M. Rassias,
Solution and stability of quattuorvigintic functional equation in intuitionistic fuzzy normed spaces, Iranian Journal of Fuzzy Systems, 15 (2018), 13-30.
|
[29] |
R. Saadati and S. M. Vaezpour,
Some results on fuzzy Banach spaces, Journal of Applied Mathematics and Computing, 17 (2005), 475-484.
doi: 10.1007/BF02936069. |
[30] |
R. Saadati and C. Park,
Approximation of derivations and the superstability in random Banach $\ast$-algebras, Advances in Difference Equations, 2018 (2018), 1-12.
doi: 10.1186/s13662-018-1882-6. |
[31] |
W. Wei, X. Li and X. Li,
New stability results for fractional integral equation, Computers & Mathematics with Applications, 64 (2012), 3468-3476.
doi: 10.1016/j.camwa.2012.02.057. |
show all references
References:
[1] |
R. P. Agarwal, R. Saadati and A. Salamati, Approximation of the multiplicatives on random multi-normed space, Journal of inequalities and applications, 204 (2017), 204.
doi: 10.1186/s13660-017-1478-9. |
[2] |
T. Bag and S. K. Samanta,
Finite dimensional intuitionistic fuzzy normed linear spaces, Ann. Fuzzy Math. Inform, 6 (2013), 45-57.
|
[3] |
Y. J. Cho, T. M. Rassias and R. Saadati, Stability of functional equations in random normed spaces, Springer Optimization and Its Applications, 86, Springer, New York, 2013.
doi: 10.1007/978-1-4614-8477-6. |
[4] |
C. D. Constantinescu, J. M. Ramirez and W. R. Zhu,
An application of fractional differential equations to risk theory, Finance and Stochastics, 23 (2019), 1001-1024.
doi: 10.1007/s00780-019-00400-8. |
[5] |
L. Cădariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math, 4 (2003), 4. |
[6] |
J. B. Diaz and B. Margolis,
A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bulletin of the American Mathematical Society, 74 (1968), 305-309.
doi: 10.1090/S0002-9904-1968-11933-0. |
[7] |
M. A. El-Moneam, F. Tarek Ibrahim and S. Elamody,
Stability of a fractional difference equation of high order, Journal of Nonlinear Sciences and Applications, 12 (2019), 65-74.
doi: 10.22436/jnsa.012.02.01. |
[8] |
A. M. A. El-Sayed and F.M. Gaafar, Positive solutions of singular Hadamard-type fractional differential equations with infinite-point boundary conditions or integral boundary conditions, Advances in Difference Equations, 2019 (2019), 382.
doi: 10.1186/s13662-019-2315-x. |
[9] |
O. Hadžić and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001.
doi: 10.1007/978-94-017-1560-7. |
[10] |
J. Jiang, D. O'Regan, J. Xu and Z. Fu,
Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions, Journal of Inequalities and Applications, 2019 (2019), 1-18.
doi: 10.1186/s13660-019-2156-x. |
[11] |
S. Jung, A fixed point approach to the stability of differential equations $y^{'} = F (x, y)$, Bulletin of the Malaysian Mathematical Sciences Society, 33 (2010). |
[12] |
S. M. Jung, A fixed point approach to the stability of an integral equation related to the wave equation, in Abstract and Applied Analysis, 2013, Hindawi, 2013.
doi: 10.1155/2013/612576. |
[13] |
H. Khan, T. Abdeljawad, M. Aslam, R. A. Khan and A. Khan,
Existence of positive solution and Hyers–Ulam stability for a nonlinear singular-delay-fractional differential equation, Advances in Difference Equations, 2019 (2019), 1-13.
doi: 10.1186/s13662-019-2054-z. |
[14] |
H. Khan, F. Jarad, T. Abdeljawad and A. Khan,
A singular ABC-fractional differential equation with $p$-Laplacian operator, Chaos, Solitons & Fractals, 129 (2019), 56-61.
doi: 10.1016/j.chaos.2019.08.017. |
[15] |
H. Khan, A. Khan, T. Abdeljawad and A. Alkhazzan, Existence results in Banach space for a nonlinear impulsive system, Advances in Difference Equations, 2019 (2019), 18.
doi: 10.1186/s13662-019-1965-z. |
[16] |
A. Khan, H. Khan, J. F. Gómez-Aguilar and T. Abdeljawad,
Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos, Solitons & Fractals, 127 (2019), 422-427.
doi: 10.1016/j.chaos.2019.07.026. |
[17] |
H. Khan, A. Khan, F. Jarad and A. Shah, Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system, Chaos, Solitons & Fractals, (2019), 109477.
doi: 10.1016/j.chaos.2019.109477. |
[18] |
Y. Ma and W. Li, Application and research of fractional differential equations in dynamic analysis of supply chain financial chaotic system, Chaos, Solitons & Fractals, 130 (2020), 109417.
doi: 10.1016/j.chaos.2019.109417. |
[19] |
D. Miheţ and V. Radu,
On the stability of the additive Cauchy functional equation in random normed spaces, Journal of mathematical Analysis and Applications, 343 (2008), 567-572.
doi: 10.1016/j.jmaa.2008.01.100. |
[20] |
D. Miheţ and R. Saadati,
On the stability of the additive Cauchy functional equation in random normed spaces, Applied mathematics letters, 24 (2011), 2005-2009.
doi: 10.1016/j.aml.2011.05.033. |
[21] |
A. K. Mirmostafaee,
Perturbation of generalized derivations in fuzzy Menger normed algebras, Fuzzy sets and systems, 195 (2012), 109-117.
doi: 10.1016/j.fss.2011.10.015. |
[22] |
H. K. Nashine and R. W. Ibrahim,
Symmetric solutions of nonlinear fractional integral equations via a new fixed point theorem under FG-contractive condition, Numerical Functional Analysis and Optimization, 40 (2019), 1448-1466.
doi: 10.1080/01630563.2019.1602779. |
[23] |
S. Nadaban, T. Binzar and F. Pater,
Some fixed point theorems for $\varphi$-contractive mappings in fuzzy normed linear spaces, Journal of Nonlinear Sciences and Applications, 10 (2017), 5668-5676.
doi: 10.22436/jnsa.010.11.05. |
[24] |
R. Naeem and M. Anwar,
Jessen type functionals and exponential convexity, J. Math. Comput. Sci, 17 (2017), 429-436.
doi: 10.22436/jmcs.017.03.08. |
[25] |
R. Naeem and M. Anwar,
Weighted Jessen's functionals and exponential convexity, J. Math. Comput. Sci, 19 (2019), 171-180.
doi: 10.22436/jmcs.019.03.04. |
[26] |
C. Park, D. Y. Shin, R. Saadati and J. R. Lee,
A fixed point approach to the fuzzy stability of an AQCQ-functional equation, Filomat, 30 (2016), 1833-1851.
doi: 10.2298/FIL1607833P. |
[27] |
C. Park, S. O. Kim and C. Alaca,
Stability of additive-quadratic rho-functional equations in Banach spaces: A fixed point approach, J. Nonlin. Sci. Appl., 10 (2017), 1252-1262.
doi: 10.22436/jnsa.010.03.34. |
[28] |
G. Sadeghi, M. Nazarianpoor and J. M. Rassias,
Solution and stability of quattuorvigintic functional equation in intuitionistic fuzzy normed spaces, Iranian Journal of Fuzzy Systems, 15 (2018), 13-30.
|
[29] |
R. Saadati and S. M. Vaezpour,
Some results on fuzzy Banach spaces, Journal of Applied Mathematics and Computing, 17 (2005), 475-484.
doi: 10.1007/BF02936069. |
[30] |
R. Saadati and C. Park,
Approximation of derivations and the superstability in random Banach $\ast$-algebras, Advances in Difference Equations, 2018 (2018), 1-12.
doi: 10.1186/s13662-018-1882-6. |
[31] |
W. Wei, X. Li and X. Li,
New stability results for fractional integral equation, Computers & Mathematics with Applications, 64 (2012), 3468-3476.
doi: 10.1016/j.camwa.2012.02.057. |
[1] |
Natalia Skripnik. Averaging of fuzzy integral equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1999-2010. doi: 10.3934/dcdsb.2017118 |
[2] |
Mickaël D. Chekroun, Jean Roux. Homeomorphisms group of normed vector space: Conjugacy problems and the Koopman operator. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 3957-3980. doi: 10.3934/dcds.2013.33.3957 |
[3] |
Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619 |
[4] |
Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099 |
[5] |
Yahia Zare Mehrjerdi. A novel methodology for portfolio selection in fuzzy multi criteria environment using risk-benefit analysis and fractional stochastic. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021019 |
[6] |
Li Song, Yangrong Li, Fengling Wang. Controller and asymptotic autonomy of random attractors for stochastic p-Laplace lattice equations. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022010 |
[7] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3703-3718. doi: 10.3934/dcdss.2021020 |
[8] |
George A. Anastassiou. Fractional Ostrowski-Sugeno Fuzzy univariate inequalities. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3305-3317. doi: 10.3934/dcdss.2020111 |
[9] |
Seiyed Hadi Abtahi, Hamidreza Rahimi, Maryam Mosleh. Solving fuzzy volterra-fredholm integral equation by fuzzy artificial neural network. Mathematical Foundations of Computing, 2021, 4 (3) : 209-219. doi: 10.3934/mfc.2021013 |
[10] |
Arzu Ahmadova, Nazim I. Mahmudov, Juan J. Nieto. Exponential stability and stabilization of fractional stochastic degenerate evolution equations in a Hilbert space: Subordination principle. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022008 |
[11] |
Chao Wang, Zhien Li, Ravi P. Agarwal. Hyers-Ulam-Rassias stability of high-dimensional quaternion impulsive fuzzy dynamic equations on time scales. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 359-386. doi: 10.3934/dcdss.2021041 |
[12] |
Anna Karczewska, Carlos Lizama. On stochastic fractional Volterra equations in Hilbert space. Conference Publications, 2007, 2007 (Special) : 541-550. doi: 10.3934/proc.2007.2007.541 |
[13] |
Yung Chung Wang, Jenn Shing Wang, Fu Hsiang Tsai. Analysis of discrete-time space priority queue with fuzzy threshold. Journal of Industrial and Management Optimization, 2009, 5 (3) : 467-479. doi: 10.3934/jimo.2009.5.467 |
[14] |
Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004 |
[15] |
Jin-Zi Yang, Yuan-Xin Li, Ming Wei. Fuzzy adaptive asymptotic tracking of fractional order nonlinear systems with uncertain disturbances. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1615-1631. doi: 10.3934/dcdss.2021144 |
[16] |
Jaydeep Swarnakar. Discrete-time realization of fractional-order proportional integral controller for a class of fractional-order system. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 309-320. doi: 10.3934/naco.2021007 |
[17] |
Jiaquan Zhan, Fanyong Meng. Cores and optimal fuzzy communication structures of fuzzy games. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1187-1198. doi: 10.3934/dcdss.2019082 |
[18] |
Xiaodong Liu, Wanquan Liu. The framework of axiomatics fuzzy sets based fuzzy classifiers. Journal of Industrial and Management Optimization, 2008, 4 (3) : 581-609. doi: 10.3934/jimo.2008.4.581 |
[19] |
Juan J. Nieto, M. Victoria Otero-Espinar, Rosana Rodríguez-López. Dynamics of the fuzzy logistic family. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 699-717. doi: 10.3934/dcdsb.2010.14.699 |
[20] |
İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics and Games, 2021, 8 (3) : 267-275. doi: 10.3934/jdg.2021010 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]