• Previous Article
    Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO
  • DCDS-S Home
  • This Issue
  • Next Article
    Weighted pseudo almost periodicity of multi-proportional delayed shunting inhibitory cellular neural networks with D operator
doi: 10.3934/dcdss.2020432

On the fuzzy stability results for fractional stochastic Volterra integral equation

a. 

School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran

b. 

Institute for Groundwater Studies (IGS) Faculty: Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa

* Corresponding author: Reza Saadati (email:rsaadati@eml.cc), https://orcid.org/0000-0002-6770-6951

Received  October 2019 Revised  February 2020 Published  November 2020

By a fuzzy controller function, we stabilize a random operator associated with a type of fractional stochastic Volterra integral equations. Using the fixed point technique, we get an approximation for the mentioned random operator by a solution of the fractional stochastic Volterra integral equation.

Citation: Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020432
References:
[1]

R. P. Agarwal, R. Saadati and A. Salamati, Approximation of the multiplicatives on random multi-normed space, Journal of inequalities and applications, 204 (2017), 204. doi: 10.1186/s13660-017-1478-9.  Google Scholar

[2]

T. Bag and S. K. Samanta, Finite dimensional intuitionistic fuzzy normed linear spaces, Ann. Fuzzy Math. Inform, 6 (2013), 45-57.   Google Scholar

[3]

Y. J. Cho, T. M. Rassias and R. Saadati, Stability of functional equations in random normed spaces, Springer Optimization and Its Applications, 86, Springer, New York, 2013. doi: 10.1007/978-1-4614-8477-6.  Google Scholar

[4]

C. D. ConstantinescuJ. M. Ramirez and W. R. Zhu, An application of fractional differential equations to risk theory, Finance and Stochastics, 23 (2019), 1001-1024.  doi: 10.1007/s00780-019-00400-8.  Google Scholar

[5]

L. Cădariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math, 4 (2003), 4.  Google Scholar

[6]

J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bulletin of the American Mathematical Society, 74 (1968), 305-309.  doi: 10.1090/S0002-9904-1968-11933-0.  Google Scholar

[7]

M. A. El-MoneamF. Tarek Ibrahim and S. Elamody, Stability of a fractional difference equation of high order, Journal of Nonlinear Sciences and Applications, 12 (2019), 65-74.  doi: 10.22436/jnsa.012.02.01.  Google Scholar

[8]

A. M. A. El-Sayed and F.M. Gaafar, Positive solutions of singular Hadamard-type fractional differential equations with infinite-point boundary conditions or integral boundary conditions, Advances in Difference Equations, 2019 (2019), 382. doi: 10.1186/s13662-019-2315-x.  Google Scholar

[9]

O. Hadžić and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001. doi: 10.1007/978-94-017-1560-7.  Google Scholar

[10]

J. JiangD. O'ReganJ. Xu and Z. Fu, Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions, Journal of Inequalities and Applications, 2019 (2019), 1-18.  doi: 10.1186/s13660-019-2156-x.  Google Scholar

[11]

S. Jung, A fixed point approach to the stability of differential equations $y^{'} = F (x, y)$, Bulletin of the Malaysian Mathematical Sciences Society, 33 (2010).  Google Scholar

[12]

S. M. Jung, A fixed point approach to the stability of an integral equation related to the wave equation, in Abstract and Applied Analysis, 2013, Hindawi, 2013. doi: 10.1155/2013/612576.  Google Scholar

[13]

H. KhanT. AbdeljawadM. AslamR. A. Khan and A. Khan, Existence of positive solution and Hyers–Ulam stability for a nonlinear singular-delay-fractional differential equation, Advances in Difference Equations, 2019 (2019), 1-13.  doi: 10.1186/s13662-019-2054-z.  Google Scholar

[14]

H. KhanF. JaradT. Abdeljawad and A. Khan, A singular ABC-fractional differential equation with $p$-Laplacian operator, Chaos, Solitons & Fractals, 129 (2019), 56-61.  doi: 10.1016/j.chaos.2019.08.017.  Google Scholar

[15]

H. Khan, A. Khan, T. Abdeljawad and A. Alkhazzan, Existence results in Banach space for a nonlinear impulsive system, Advances in Difference Equations, 2019 (2019), 18. doi: 10.1186/s13662-019-1965-z.  Google Scholar

[16]

A. KhanH. KhanJ. F. Gómez-Aguilar and T. Abdeljawad, Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos, Solitons & Fractals, 127 (2019), 422-427.  doi: 10.1016/j.chaos.2019.07.026.  Google Scholar

[17]

H. Khan, A. Khan, F. Jarad and A. Shah, Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system, Chaos, Solitons & Fractals, (2019), 109477. doi: 10.1016/j.chaos.2019.109477.  Google Scholar

[18]

Y. Ma and W. Li, Application and research of fractional differential equations in dynamic analysis of supply chain financial chaotic system, Chaos, Solitons & Fractals, 130 (2020), 109417. doi: 10.1016/j.chaos.2019.109417.  Google Scholar

[19]

D. Miheţ and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, Journal of mathematical Analysis and Applications, 343 (2008), 567-572.  doi: 10.1016/j.jmaa.2008.01.100.  Google Scholar

[20]

D. Miheţ and R. Saadati, On the stability of the additive Cauchy functional equation in random normed spaces, Applied mathematics letters, 24 (2011), 2005-2009.  doi: 10.1016/j.aml.2011.05.033.  Google Scholar

[21]

A. K. Mirmostafaee, Perturbation of generalized derivations in fuzzy Menger normed algebras, Fuzzy sets and systems, 195 (2012), 109-117.  doi: 10.1016/j.fss.2011.10.015.  Google Scholar

[22]

H. K. Nashine and R. W. Ibrahim, Symmetric solutions of nonlinear fractional integral equations via a new fixed point theorem under FG-contractive condition, Numerical Functional Analysis and Optimization, 40 (2019), 1448-1466.  doi: 10.1080/01630563.2019.1602779.  Google Scholar

[23]

S. NadabanT. Binzar and F. Pater, Some fixed point theorems for $\varphi$-contractive mappings in fuzzy normed linear spaces, Journal of Nonlinear Sciences and Applications, 10 (2017), 5668-5676.  doi: 10.22436/jnsa.010.11.05.  Google Scholar

[24]

R. Naeem and M. Anwar, Jessen type functionals and exponential convexity, J. Math. Comput. Sci, 17 (2017), 429-436.  doi: 10.22436/jmcs.017.03.08.  Google Scholar

[25]

R. Naeem and M. Anwar, Weighted Jessen's functionals and exponential convexity, J. Math. Comput. Sci, 19 (2019), 171-180.  doi: 10.22436/jmcs.019.03.04.  Google Scholar

[26]

C. ParkD. Y. ShinR. Saadati and J. R. Lee, A fixed point approach to the fuzzy stability of an AQCQ-functional equation, Filomat, 30 (2016), 1833-1851.  doi: 10.2298/FIL1607833P.  Google Scholar

[27]

C. ParkS. O. Kim and C. Alaca, Stability of additive-quadratic rho-functional equations in Banach spaces: A fixed point approach, J. Nonlin. Sci. Appl., 10 (2017), 1252-1262.  doi: 10.22436/jnsa.010.03.34.  Google Scholar

[28]

G. SadeghiM. Nazarianpoor and J. M. Rassias, Solution and stability of quattuorvigintic functional equation in intuitionistic fuzzy normed spaces, Iranian Journal of Fuzzy Systems, 15 (2018), 13-30.   Google Scholar

[29]

R. Saadati and S. M. Vaezpour, Some results on fuzzy Banach spaces, Journal of Applied Mathematics and Computing, 17 (2005), 475-484.  doi: 10.1007/BF02936069.  Google Scholar

[30]

R. Saadati and C. Park, Approximation of derivations and the superstability in random Banach $\ast$-algebras, Advances in Difference Equations, 2018 (2018), 1-12.  doi: 10.1186/s13662-018-1882-6.  Google Scholar

[31]

W. WeiX. Li and X. Li, New stability results for fractional integral equation, Computers & Mathematics with Applications, 64 (2012), 3468-3476.  doi: 10.1016/j.camwa.2012.02.057.  Google Scholar

show all references

References:
[1]

R. P. Agarwal, R. Saadati and A. Salamati, Approximation of the multiplicatives on random multi-normed space, Journal of inequalities and applications, 204 (2017), 204. doi: 10.1186/s13660-017-1478-9.  Google Scholar

[2]

T. Bag and S. K. Samanta, Finite dimensional intuitionistic fuzzy normed linear spaces, Ann. Fuzzy Math. Inform, 6 (2013), 45-57.   Google Scholar

[3]

Y. J. Cho, T. M. Rassias and R. Saadati, Stability of functional equations in random normed spaces, Springer Optimization and Its Applications, 86, Springer, New York, 2013. doi: 10.1007/978-1-4614-8477-6.  Google Scholar

[4]

C. D. ConstantinescuJ. M. Ramirez and W. R. Zhu, An application of fractional differential equations to risk theory, Finance and Stochastics, 23 (2019), 1001-1024.  doi: 10.1007/s00780-019-00400-8.  Google Scholar

[5]

L. Cădariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math, 4 (2003), 4.  Google Scholar

[6]

J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bulletin of the American Mathematical Society, 74 (1968), 305-309.  doi: 10.1090/S0002-9904-1968-11933-0.  Google Scholar

[7]

M. A. El-MoneamF. Tarek Ibrahim and S. Elamody, Stability of a fractional difference equation of high order, Journal of Nonlinear Sciences and Applications, 12 (2019), 65-74.  doi: 10.22436/jnsa.012.02.01.  Google Scholar

[8]

A. M. A. El-Sayed and F.M. Gaafar, Positive solutions of singular Hadamard-type fractional differential equations with infinite-point boundary conditions or integral boundary conditions, Advances in Difference Equations, 2019 (2019), 382. doi: 10.1186/s13662-019-2315-x.  Google Scholar

[9]

O. Hadžić and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001. doi: 10.1007/978-94-017-1560-7.  Google Scholar

[10]

J. JiangD. O'ReganJ. Xu and Z. Fu, Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions, Journal of Inequalities and Applications, 2019 (2019), 1-18.  doi: 10.1186/s13660-019-2156-x.  Google Scholar

[11]

S. Jung, A fixed point approach to the stability of differential equations $y^{'} = F (x, y)$, Bulletin of the Malaysian Mathematical Sciences Society, 33 (2010).  Google Scholar

[12]

S. M. Jung, A fixed point approach to the stability of an integral equation related to the wave equation, in Abstract and Applied Analysis, 2013, Hindawi, 2013. doi: 10.1155/2013/612576.  Google Scholar

[13]

H. KhanT. AbdeljawadM. AslamR. A. Khan and A. Khan, Existence of positive solution and Hyers–Ulam stability for a nonlinear singular-delay-fractional differential equation, Advances in Difference Equations, 2019 (2019), 1-13.  doi: 10.1186/s13662-019-2054-z.  Google Scholar

[14]

H. KhanF. JaradT. Abdeljawad and A. Khan, A singular ABC-fractional differential equation with $p$-Laplacian operator, Chaos, Solitons & Fractals, 129 (2019), 56-61.  doi: 10.1016/j.chaos.2019.08.017.  Google Scholar

[15]

H. Khan, A. Khan, T. Abdeljawad and A. Alkhazzan, Existence results in Banach space for a nonlinear impulsive system, Advances in Difference Equations, 2019 (2019), 18. doi: 10.1186/s13662-019-1965-z.  Google Scholar

[16]

A. KhanH. KhanJ. F. Gómez-Aguilar and T. Abdeljawad, Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos, Solitons & Fractals, 127 (2019), 422-427.  doi: 10.1016/j.chaos.2019.07.026.  Google Scholar

[17]

H. Khan, A. Khan, F. Jarad and A. Shah, Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system, Chaos, Solitons & Fractals, (2019), 109477. doi: 10.1016/j.chaos.2019.109477.  Google Scholar

[18]

Y. Ma and W. Li, Application and research of fractional differential equations in dynamic analysis of supply chain financial chaotic system, Chaos, Solitons & Fractals, 130 (2020), 109417. doi: 10.1016/j.chaos.2019.109417.  Google Scholar

[19]

D. Miheţ and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, Journal of mathematical Analysis and Applications, 343 (2008), 567-572.  doi: 10.1016/j.jmaa.2008.01.100.  Google Scholar

[20]

D. Miheţ and R. Saadati, On the stability of the additive Cauchy functional equation in random normed spaces, Applied mathematics letters, 24 (2011), 2005-2009.  doi: 10.1016/j.aml.2011.05.033.  Google Scholar

[21]

A. K. Mirmostafaee, Perturbation of generalized derivations in fuzzy Menger normed algebras, Fuzzy sets and systems, 195 (2012), 109-117.  doi: 10.1016/j.fss.2011.10.015.  Google Scholar

[22]

H. K. Nashine and R. W. Ibrahim, Symmetric solutions of nonlinear fractional integral equations via a new fixed point theorem under FG-contractive condition, Numerical Functional Analysis and Optimization, 40 (2019), 1448-1466.  doi: 10.1080/01630563.2019.1602779.  Google Scholar

[23]

S. NadabanT. Binzar and F. Pater, Some fixed point theorems for $\varphi$-contractive mappings in fuzzy normed linear spaces, Journal of Nonlinear Sciences and Applications, 10 (2017), 5668-5676.  doi: 10.22436/jnsa.010.11.05.  Google Scholar

[24]

R. Naeem and M. Anwar, Jessen type functionals and exponential convexity, J. Math. Comput. Sci, 17 (2017), 429-436.  doi: 10.22436/jmcs.017.03.08.  Google Scholar

[25]

R. Naeem and M. Anwar, Weighted Jessen's functionals and exponential convexity, J. Math. Comput. Sci, 19 (2019), 171-180.  doi: 10.22436/jmcs.019.03.04.  Google Scholar

[26]

C. ParkD. Y. ShinR. Saadati and J. R. Lee, A fixed point approach to the fuzzy stability of an AQCQ-functional equation, Filomat, 30 (2016), 1833-1851.  doi: 10.2298/FIL1607833P.  Google Scholar

[27]

C. ParkS. O. Kim and C. Alaca, Stability of additive-quadratic rho-functional equations in Banach spaces: A fixed point approach, J. Nonlin. Sci. Appl., 10 (2017), 1252-1262.  doi: 10.22436/jnsa.010.03.34.  Google Scholar

[28]

G. SadeghiM. Nazarianpoor and J. M. Rassias, Solution and stability of quattuorvigintic functional equation in intuitionistic fuzzy normed spaces, Iranian Journal of Fuzzy Systems, 15 (2018), 13-30.   Google Scholar

[29]

R. Saadati and S. M. Vaezpour, Some results on fuzzy Banach spaces, Journal of Applied Mathematics and Computing, 17 (2005), 475-484.  doi: 10.1007/BF02936069.  Google Scholar

[30]

R. Saadati and C. Park, Approximation of derivations and the superstability in random Banach $\ast$-algebras, Advances in Difference Equations, 2018 (2018), 1-12.  doi: 10.1186/s13662-018-1882-6.  Google Scholar

[31]

W. WeiX. Li and X. Li, New stability results for fractional integral equation, Computers & Mathematics with Applications, 64 (2012), 3468-3476.  doi: 10.1016/j.camwa.2012.02.057.  Google Scholar

[1]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[2]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[3]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[4]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[5]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[6]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[7]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[8]

Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230

[9]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[10]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[11]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[12]

Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189

[13]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[14]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[15]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[16]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[17]

Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029

[18]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[19]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[20]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (24)
  • HTML views (88)
  • Cited by (0)

[Back to Top]