• Previous Article
    Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species
  • DCDS-S Home
  • This Issue
  • Next Article
    Higher order convergence for a class of set differential equations with initial conditions
doi: 10.3934/dcdss.2020434

Feedback stabilization of bilinear coupled hyperbolic systems

1. 

TSI Team, Department of Mathematics, Moulay Ismail University, Faculty of Sciences, Meknes, Morocco

2. 

Department of Industrial Engineering, National Superior School of Mines, Rabat, Morocco

3. 

LERMA, Mohammadia Engineering School, Mohamed V University in Rabat, Morocco

4. 

TSI Team, Department of Mathematics, Moulay Ismail University, Faculty of Sciences, Meknes, Morocco

* Corresponding author: Imad El Harraki

Received  November 2019 Revised  July 2020 Published  November 2020

This paper studies the problem of stabilization of some coupled hyperbolic systems using nonlinear feedback. We give a sufficient condition for exponential stabilization by bilinear feedback control. The specificity of the control used is that it acts on only one equation. The results obtained are illustrated by some examples where a theorem of Mehrenberger has been used for the observability of compactly perturbed systems [18].

Citation: Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020434
References:
[1]

F. Alabeau-BoussouiraP. Cannarsa and V. Kormonik, Indirect internal stabilization of weakly coupled evolution equations, J. Evol. Equ, 2 (2002), 127-150.  doi: 10.1007/s00028-002-8083-0.  Google Scholar

[2]

F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems, SIAM J. Control Optim, 41 (2002), 511-541.  doi: 10.1137/S0363012901385368.  Google Scholar

[3]

K. Ammari and S. Nicaise, Polynomial and analytic stabilization of a wave equation coupled with an Euler-Bernoulli beam, Math. Methods Appl. Sci, 32 (2009), 556-576.  doi: 10.1002/mma.1052.  Google Scholar

[4]

K. Ammari and M. Mehrenberger, Stabilization of coupled systems, Acta Math. Hungar, 123 (2009), 1-10.  doi: 10.1007/s10474-009-8011-7.  Google Scholar

[5]

K. AmmariM. Jellouli and M. Mehrenberger, Feedback stabilization of a coupled string-beam system, Networks & Heterogeneous Media, 4 (2009), 19-34.  doi: 10.3934/nhm.2009.4.19.  Google Scholar

[6]

K. Ammari and M. Tucsnak, Stabilization of second order evolution equations by a class of unbounded feedbacks, ESAIM COCV, 6 (2001), 361-386.  doi: 10.1051/cocv:2001114.  Google Scholar

[7]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, 2nd edition, SIAM, 2005.  Google Scholar

[8]

J. Ball and M. Slemrod, Feedback stabilization of distributed semilinear control systems, J. Appl. Math. Optim, 5 (1979), 169-179.  doi: 10.1007/BF01442552.  Google Scholar

[9] V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional System, Academic Press, 1993.   Google Scholar
[10]

E. A. BenhassiK. AmmariS. Boulite and L. Maniar, Exponential energy decay of some coupled second order systems, Semigroup Forum, 86 (2013), 362-382.  doi: 10.1007/s00233-012-9440-0.  Google Scholar

[11]

L. Berrahmoune, Stabilization and decay estimate for distributed bilinear systems, Systems & Control Letters, 36 (1999), 167–171. doi: 10.1016/S0167-6911(98)00065-6.  Google Scholar

[12]

I. BochicchioC. Giorgi and E. Vuk, On the viscoelastic coupled suspension bridge, Evolution Equations & Control Theory, 3 (2014), 373-397.  doi: 10.3934/eect.2014.3.373.  Google Scholar

[13]

J. Charles, M. Mbekhta and H. Queffélec, Analyse Fonctionnelle et Théorie des Opérateurs, Dunod, 2010. Google Scholar

[14]

I. El Harraki and A. Boutoulout, Controllability of the wave equation via multiplicative controls, IMA Journal of Mathematical Control and Information, 35 (2018), 393-409.  doi: 10.1093/imamci/dnw055.  Google Scholar

[15]

A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Portugal Math, 46 (1989), 245-258.   Google Scholar

[16]

S. Hongying and W. Xiang-Sheng Wang, Global dynamics of a coupled epidemic model, Discrete & Continuous Dynamical Systems - B, 22 (2017), 1575-1585.  doi: 10.3934/dcdsb.2017076.  Google Scholar

[17]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation des Systèmes Distribués, 1st edition, Masson, Paris, 1998.  Google Scholar

[18]

M. Mehrenberger, Observability of coupled systems, Acta Math. Hungar, 4 (2004), 321-348.  doi: 10.1023/B:AMHU.0000028832.47891.09.  Google Scholar

[19]

M. Ouzahra, Exponential and weak stabilization of constrained bilinear systems, SIAM J. Control Optim, 48 (2010), 3962-3974.  doi: 10.1137/080739161.  Google Scholar

[20]

A. Pazy, Semi-Groups of Linear Operators and Applications to Partial Differential Equations, 1st edition, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[21]

J. Simon, Compact sets in the space $L^{p}(0, T; B)$, Annali di Matematica Pura ed Applicata (Ⅳ), CXLVI (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[22]

A. Soufyane, Uniform stability of coupled second order equations, Electron. J. Diff. Equ, 25 (2001), 1-10.   Google Scholar

[23]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, 1st edition, Birkhauser Verlag AG, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[24]

L. Yu, Exact Controllability of the Lazer-McKenna Suspension Bridge Equation, Ph.D thesis, Nevada University in Las Vegas, 2014.  Google Scholar

[25]

A. Wehbe and W. Youssef, Observabilité et contrôlabilité exacte indirecte interne par un contrôle localement distribué de systèmes d'équations couplées, Comptes Rendus Mathématique, 348 (2010), 1169-1173.  doi: 10.1016/j.crma.2010.10.013.  Google Scholar

[26]

E. Zuazua, Exponential decay for the semi-linear wave equation with locally distributed damping, Comm. in Partial Differential Equations, 15 (1990), 205-235.  doi: 10.1080/03605309908820684.  Google Scholar

show all references

References:
[1]

F. Alabeau-BoussouiraP. Cannarsa and V. Kormonik, Indirect internal stabilization of weakly coupled evolution equations, J. Evol. Equ, 2 (2002), 127-150.  doi: 10.1007/s00028-002-8083-0.  Google Scholar

[2]

F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems, SIAM J. Control Optim, 41 (2002), 511-541.  doi: 10.1137/S0363012901385368.  Google Scholar

[3]

K. Ammari and S. Nicaise, Polynomial and analytic stabilization of a wave equation coupled with an Euler-Bernoulli beam, Math. Methods Appl. Sci, 32 (2009), 556-576.  doi: 10.1002/mma.1052.  Google Scholar

[4]

K. Ammari and M. Mehrenberger, Stabilization of coupled systems, Acta Math. Hungar, 123 (2009), 1-10.  doi: 10.1007/s10474-009-8011-7.  Google Scholar

[5]

K. AmmariM. Jellouli and M. Mehrenberger, Feedback stabilization of a coupled string-beam system, Networks & Heterogeneous Media, 4 (2009), 19-34.  doi: 10.3934/nhm.2009.4.19.  Google Scholar

[6]

K. Ammari and M. Tucsnak, Stabilization of second order evolution equations by a class of unbounded feedbacks, ESAIM COCV, 6 (2001), 361-386.  doi: 10.1051/cocv:2001114.  Google Scholar

[7]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, 2nd edition, SIAM, 2005.  Google Scholar

[8]

J. Ball and M. Slemrod, Feedback stabilization of distributed semilinear control systems, J. Appl. Math. Optim, 5 (1979), 169-179.  doi: 10.1007/BF01442552.  Google Scholar

[9] V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional System, Academic Press, 1993.   Google Scholar
[10]

E. A. BenhassiK. AmmariS. Boulite and L. Maniar, Exponential energy decay of some coupled second order systems, Semigroup Forum, 86 (2013), 362-382.  doi: 10.1007/s00233-012-9440-0.  Google Scholar

[11]

L. Berrahmoune, Stabilization and decay estimate for distributed bilinear systems, Systems & Control Letters, 36 (1999), 167–171. doi: 10.1016/S0167-6911(98)00065-6.  Google Scholar

[12]

I. BochicchioC. Giorgi and E. Vuk, On the viscoelastic coupled suspension bridge, Evolution Equations & Control Theory, 3 (2014), 373-397.  doi: 10.3934/eect.2014.3.373.  Google Scholar

[13]

J. Charles, M. Mbekhta and H. Queffélec, Analyse Fonctionnelle et Théorie des Opérateurs, Dunod, 2010. Google Scholar

[14]

I. El Harraki and A. Boutoulout, Controllability of the wave equation via multiplicative controls, IMA Journal of Mathematical Control and Information, 35 (2018), 393-409.  doi: 10.1093/imamci/dnw055.  Google Scholar

[15]

A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Portugal Math, 46 (1989), 245-258.   Google Scholar

[16]

S. Hongying and W. Xiang-Sheng Wang, Global dynamics of a coupled epidemic model, Discrete & Continuous Dynamical Systems - B, 22 (2017), 1575-1585.  doi: 10.3934/dcdsb.2017076.  Google Scholar

[17]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation des Systèmes Distribués, 1st edition, Masson, Paris, 1998.  Google Scholar

[18]

M. Mehrenberger, Observability of coupled systems, Acta Math. Hungar, 4 (2004), 321-348.  doi: 10.1023/B:AMHU.0000028832.47891.09.  Google Scholar

[19]

M. Ouzahra, Exponential and weak stabilization of constrained bilinear systems, SIAM J. Control Optim, 48 (2010), 3962-3974.  doi: 10.1137/080739161.  Google Scholar

[20]

A. Pazy, Semi-Groups of Linear Operators and Applications to Partial Differential Equations, 1st edition, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[21]

J. Simon, Compact sets in the space $L^{p}(0, T; B)$, Annali di Matematica Pura ed Applicata (Ⅳ), CXLVI (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[22]

A. Soufyane, Uniform stability of coupled second order equations, Electron. J. Diff. Equ, 25 (2001), 1-10.   Google Scholar

[23]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, 1st edition, Birkhauser Verlag AG, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[24]

L. Yu, Exact Controllability of the Lazer-McKenna Suspension Bridge Equation, Ph.D thesis, Nevada University in Las Vegas, 2014.  Google Scholar

[25]

A. Wehbe and W. Youssef, Observabilité et contrôlabilité exacte indirecte interne par un contrôle localement distribué de systèmes d'équations couplées, Comptes Rendus Mathématique, 348 (2010), 1169-1173.  doi: 10.1016/j.crma.2010.10.013.  Google Scholar

[26]

E. Zuazua, Exponential decay for the semi-linear wave equation with locally distributed damping, Comm. in Partial Differential Equations, 15 (1990), 205-235.  doi: 10.1080/03605309908820684.  Google Scholar

[1]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[4]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[5]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[6]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[7]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[8]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[9]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[10]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[11]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[12]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[13]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[14]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[15]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[16]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[17]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[18]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[19]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[20]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (61)
  • HTML views (140)
  • Cited by (0)

[Back to Top]