
-
Previous Article
Traffic congestion pricing via network congestion game approach
- DCDS-S Home
- This Issue
-
Next Article
Numerical treatment of Gray-Scott model with operator splitting method
Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative
1. | Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran |
2. | Department of Mathematical Sciences, University of South Africa, UNISA 0003, South Africa |
3. | Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 110122, Taiwan |
In recent years, a new definition of fractional derivative which has a nonlocal and non-singular kernel has been proposed by Atangana and Baleanu. This new definition is called the Atangana-Baleanu derivative. In this paper, we present a new technique to obtain the numerical solution of advection-diffusion equation containing Atangana-Baleanu derivative. For this purpose, we use the operational matrix of fractional integral based on Genocchi polynomials. An error bound is given for the approximation of a bivariate function using Genocchi polynomials. Finally, some examples are given to illustrate the applicability and efficiency of the proposed method.
References:
[1] |
A. Alsaedi, D. Baleanu, S. Etemad and S. Rezapour, On coupled systems of time–fractional differential problems by using a new fractional derivative, Journal of Function Spaces, 2016 (2015), 8 pp.
doi: 10.1155/2016/4626940. |
[2] |
A. Atangana and D. Baleanu,
New fractional derivatives with nonlocal and non–singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.
doi: 10.2298/TSCI160111018A. |
[3] |
A. Atangana and D. Baleanu, Caputo–Fabrizio derivative applied to groundwater flow within a confined aquifer, J. Eng. Mech., 143 (2016).
doi: 10.1061/(ASCE)EM.1943-7889.0001091. |
[4] |
A. Atangana and Z. Hammouch, Fractional calculus with power law: The cradle of our ancestors, Eur. Phys. J. Plus, 134 (2019), 429.
doi: 10.1140/epjp/i2019-12777-8. |
[5] |
A. Atangana and I. Koca,
Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order, Chaos, Solitons and Fractals, 89 (2016), 447-454.
doi: 10.1016/j.chaos.2016.02.012. |
[6] |
D. Baleanu, H. Mohammadi and S. Rezapour, Analysis of the model of HIV–1 infection of CD4+ T–cell with a new approach of fractional derivative, Adv. Differ. Equ., 2020 (2020).
doi: 10.1186/s13662-020-02544-w. |
[7] |
M. Caputo and M. Fabrizio,
Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 1-11.
doi: 10.18576/pfda/020101. |
[8] |
Y. Chatibi, E. H. El Kinani and A. Ouhadan,
Variational calculus involving nonlocal fractional derivative with Mittag–Leffler kernel, Chaos, Solitons and Fractals, 118 (2019), 117-121.
doi: 10.1016/j.chaos.2018.11.017. |
[9] |
M. Dehghan,
Weighted finite difference techniques for the one–dimensional advection–diffusion equation, Appl. Math. Comput., 147 (2004), 307-319.
doi: 10.1016/S0096-3003(02)00667-7. |
[10] |
R. M. Ganji and H. Jafari, A numerical approach for multi–variable orders differential equations using Jacobi polynomials, International Journal of Applied and Computational Mathematics, 5 (2019).
doi: 10.1007/s40819-019-0610-6. |
[11] |
R. M. Ganji and H. Jafari, Numerical solution of variable order integro–differential equations, Advanced Math. Models & Applications, 4 (2019), 64-69. Google Scholar |
[12] |
R. M. Ganji and H. Jafari and A. R. Adem, A numerical scheme to solve variable order diffusion–wave equations, Thermal Science, (2019), 371–371.
doi: 10.2298/TSCI190729371M. |
[13] |
R. M. Ganji and H. Jafari and D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel, Chaos, Solitons and Fractals, 130 (2020), 109405.
doi: 10.1016/j.chaos.2019.109405. |
[14] |
M. M. Ghalib, A. A. Zafar, Z. Hammouch, M. B. Riaz and K. Shabbir,
Analytical results on the unsteady rotational flow of fractional–order non–Newtonian fluids with shear stress on the boundary, Discrete and Continuous Dynamical Systems - S, 13 (2020), 683-693.
doi: 10.3934/dcdss.2020037. |
[15] |
M. M. Ghalib, A. A. Zafar, M. B. Riaz, Z. Hammouch and K. Shabbir, Analytical approach for the steady MHD conjugate viscous fluid flow in a porous medium with nonsingular fractional derivative, Physica A: Statistical Mechanics and its Applications, (2020), 123941.
doi: 10.1016/j.physa.2019.123941. |
[16] |
A. Jajarmi, S. Arshad and D. Baleanu, A new fractional modelling and control strategy for the outbreak of dengue fever, Physica A: Statistical Mechanics and its Applications, 535 (2019).
doi: 10.1016/j.physa.2019.122524. |
[17] |
A. Jajarmi, D. Baleanu, S. S. Sajjadi and J. H. Asad, A new feature of the fractional Euler–Lagrange equations for a coupled oscillator using a nonsingular operator approach, Frontiers in Physics, 7 (2019).
doi: 10.3389/fphy.2019.00196. |
[18] |
I. Koca,
Numerical analysis of coupled fractional differential equations with Atangana–Baleanu fractional derivative, Discrete and Continuous Dynamical Systems - S, 12 (2018), 475-486.
doi: 10.3934/dcdss.2019031. |
[19] |
A. Mohebbi and M. Dehghan,
High-order compact solution of the one–dimensional heat and advection–diffusion equations, Appl Math Model, 34 (2010), 3071-3084.
doi: 10.1016/j.apm.2010.01.013. |
[20] |
S. Nemati, P. M. Lima and Y. Ordokhani,
Numerical solution of a class of two–dimensional nonlinear Volterra integral equations using Legendre polynomials, Journal of Computational and Applied Mathematics, 242 (2013), 53-69.
doi: 10.1016/j.cam.2012.10.021. |
[21] |
F. Ozpinar and F. B. M. Belgacem,
The discrete homotopy perturbation Sumudu transform method for solving partial difference equations, Discrete and Continuous Dynamical Systems - S, 12 (2019), 615-624.
doi: 10.3934/dcdss.2019039. |
[22] |
K. M. Owolabi and Z. Hammouch,
Spatiotemporal patterns in the Belousov–Zhabotinskii reaction systems with Atangana–Baleanu fractional order derivative, Physica A: Statistical Mechanics and its Applications, 523 (2019), 1072-1090.
doi: 10.1016/j.physa.2019.04.017. |
[23] |
P. Roache, Computational Fluid Dynamics, Hermosa Press, Albuquerque, NM, 1972.
![]() |
[24] |
S.S. Roshan, H. Jafari and D. Baleanu,
Solving FDEs with Caputo–Fabrizio derivative by operational matrix based on Genocchi polynomials, Mathematical Methods in the Applied Sciences, 4 (2018), 9134-9141.
doi: 10.1002/mma.5098. |
[25] |
H. M. Srivastava and K. M. Saad, Some new models of the time-fractional gas dynamics equation, Advanced Math. Models & Applications, 3 (2018), 5-17. Google Scholar |
[26] |
H. Tajadodi, A Numerical approach of fractional advection–diffusion equation with Atangana–Baleanu derivative, Chaos, Solitons and Fractals, 130 (2020), 109527.
doi: 10.1016/j.chaos.2019.109527. |
[27] |
S. Ucar, E. Ucar, N. Ozdemir and Z. Hammouch,
Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative, Chaos, Solitons and Fractals, 118 (2019), 300-306.
doi: 10.1016/j.chaos.2018.12.003. |
[28] |
M. Zerroukat, K. Djidjeli and A. Charafi,
Explicit and implicit meshless methods for linear advection–diffusion–type partial differential equations, Int. J. Numer. Meth. Eng., 48 (2000), 19-35.
doi: 10.1002/(SICI)1097-0207(20000510)48:1<19::AID-NME862>3.0.CO;2-3. |
show all references
References:
[1] |
A. Alsaedi, D. Baleanu, S. Etemad and S. Rezapour, On coupled systems of time–fractional differential problems by using a new fractional derivative, Journal of Function Spaces, 2016 (2015), 8 pp.
doi: 10.1155/2016/4626940. |
[2] |
A. Atangana and D. Baleanu,
New fractional derivatives with nonlocal and non–singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.
doi: 10.2298/TSCI160111018A. |
[3] |
A. Atangana and D. Baleanu, Caputo–Fabrizio derivative applied to groundwater flow within a confined aquifer, J. Eng. Mech., 143 (2016).
doi: 10.1061/(ASCE)EM.1943-7889.0001091. |
[4] |
A. Atangana and Z. Hammouch, Fractional calculus with power law: The cradle of our ancestors, Eur. Phys. J. Plus, 134 (2019), 429.
doi: 10.1140/epjp/i2019-12777-8. |
[5] |
A. Atangana and I. Koca,
Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order, Chaos, Solitons and Fractals, 89 (2016), 447-454.
doi: 10.1016/j.chaos.2016.02.012. |
[6] |
D. Baleanu, H. Mohammadi and S. Rezapour, Analysis of the model of HIV–1 infection of CD4+ T–cell with a new approach of fractional derivative, Adv. Differ. Equ., 2020 (2020).
doi: 10.1186/s13662-020-02544-w. |
[7] |
M. Caputo and M. Fabrizio,
Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 1-11.
doi: 10.18576/pfda/020101. |
[8] |
Y. Chatibi, E. H. El Kinani and A. Ouhadan,
Variational calculus involving nonlocal fractional derivative with Mittag–Leffler kernel, Chaos, Solitons and Fractals, 118 (2019), 117-121.
doi: 10.1016/j.chaos.2018.11.017. |
[9] |
M. Dehghan,
Weighted finite difference techniques for the one–dimensional advection–diffusion equation, Appl. Math. Comput., 147 (2004), 307-319.
doi: 10.1016/S0096-3003(02)00667-7. |
[10] |
R. M. Ganji and H. Jafari, A numerical approach for multi–variable orders differential equations using Jacobi polynomials, International Journal of Applied and Computational Mathematics, 5 (2019).
doi: 10.1007/s40819-019-0610-6. |
[11] |
R. M. Ganji and H. Jafari, Numerical solution of variable order integro–differential equations, Advanced Math. Models & Applications, 4 (2019), 64-69. Google Scholar |
[12] |
R. M. Ganji and H. Jafari and A. R. Adem, A numerical scheme to solve variable order diffusion–wave equations, Thermal Science, (2019), 371–371.
doi: 10.2298/TSCI190729371M. |
[13] |
R. M. Ganji and H. Jafari and D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel, Chaos, Solitons and Fractals, 130 (2020), 109405.
doi: 10.1016/j.chaos.2019.109405. |
[14] |
M. M. Ghalib, A. A. Zafar, Z. Hammouch, M. B. Riaz and K. Shabbir,
Analytical results on the unsteady rotational flow of fractional–order non–Newtonian fluids with shear stress on the boundary, Discrete and Continuous Dynamical Systems - S, 13 (2020), 683-693.
doi: 10.3934/dcdss.2020037. |
[15] |
M. M. Ghalib, A. A. Zafar, M. B. Riaz, Z. Hammouch and K. Shabbir, Analytical approach for the steady MHD conjugate viscous fluid flow in a porous medium with nonsingular fractional derivative, Physica A: Statistical Mechanics and its Applications, (2020), 123941.
doi: 10.1016/j.physa.2019.123941. |
[16] |
A. Jajarmi, S. Arshad and D. Baleanu, A new fractional modelling and control strategy for the outbreak of dengue fever, Physica A: Statistical Mechanics and its Applications, 535 (2019).
doi: 10.1016/j.physa.2019.122524. |
[17] |
A. Jajarmi, D. Baleanu, S. S. Sajjadi and J. H. Asad, A new feature of the fractional Euler–Lagrange equations for a coupled oscillator using a nonsingular operator approach, Frontiers in Physics, 7 (2019).
doi: 10.3389/fphy.2019.00196. |
[18] |
I. Koca,
Numerical analysis of coupled fractional differential equations with Atangana–Baleanu fractional derivative, Discrete and Continuous Dynamical Systems - S, 12 (2018), 475-486.
doi: 10.3934/dcdss.2019031. |
[19] |
A. Mohebbi and M. Dehghan,
High-order compact solution of the one–dimensional heat and advection–diffusion equations, Appl Math Model, 34 (2010), 3071-3084.
doi: 10.1016/j.apm.2010.01.013. |
[20] |
S. Nemati, P. M. Lima and Y. Ordokhani,
Numerical solution of a class of two–dimensional nonlinear Volterra integral equations using Legendre polynomials, Journal of Computational and Applied Mathematics, 242 (2013), 53-69.
doi: 10.1016/j.cam.2012.10.021. |
[21] |
F. Ozpinar and F. B. M. Belgacem,
The discrete homotopy perturbation Sumudu transform method for solving partial difference equations, Discrete and Continuous Dynamical Systems - S, 12 (2019), 615-624.
doi: 10.3934/dcdss.2019039. |
[22] |
K. M. Owolabi and Z. Hammouch,
Spatiotemporal patterns in the Belousov–Zhabotinskii reaction systems with Atangana–Baleanu fractional order derivative, Physica A: Statistical Mechanics and its Applications, 523 (2019), 1072-1090.
doi: 10.1016/j.physa.2019.04.017. |
[23] |
P. Roache, Computational Fluid Dynamics, Hermosa Press, Albuquerque, NM, 1972.
![]() |
[24] |
S.S. Roshan, H. Jafari and D. Baleanu,
Solving FDEs with Caputo–Fabrizio derivative by operational matrix based on Genocchi polynomials, Mathematical Methods in the Applied Sciences, 4 (2018), 9134-9141.
doi: 10.1002/mma.5098. |
[25] |
H. M. Srivastava and K. M. Saad, Some new models of the time-fractional gas dynamics equation, Advanced Math. Models & Applications, 3 (2018), 5-17. Google Scholar |
[26] |
H. Tajadodi, A Numerical approach of fractional advection–diffusion equation with Atangana–Baleanu derivative, Chaos, Solitons and Fractals, 130 (2020), 109527.
doi: 10.1016/j.chaos.2019.109527. |
[27] |
S. Ucar, E. Ucar, N. Ozdemir and Z. Hammouch,
Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative, Chaos, Solitons and Fractals, 118 (2019), 300-306.
doi: 10.1016/j.chaos.2018.12.003. |
[28] |
M. Zerroukat, K. Djidjeli and A. Charafi,
Explicit and implicit meshless methods for linear advection–diffusion–type partial differential equations, Int. J. Numer. Meth. Eng., 48 (2000), 19-35.
doi: 10.1002/(SICI)1097-0207(20000510)48:1<19::AID-NME862>3.0.CO;2-3. |




M=3 | M=6 | |
M=3 | M=6 | |
M=3 | M=6 | |
M=3 | M=6 | |
M=3 | M=6 | |
M=3 | M=6 | |
[1] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[2] |
Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021002 |
[3] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
[4] |
Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016 |
[5] |
Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050 |
[6] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[7] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[8] |
Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001 |
[9] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[10] |
Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350 |
[11] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[12] |
Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 |
[13] |
Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015 |
[14] |
He Zhang, John Harlim, Xiantao Li. Estimating linear response statistics using orthogonal polynomials: An RKHS formulation. Foundations of Data Science, 2020, 2 (4) : 443-485. doi: 10.3934/fods.2020021 |
[15] |
Shuai Huang, Zhi-Ping Fan, Xiaohuan Wang. Optimal financing and operational decisions of capital-constrained manufacturer under green credit and subsidy. Journal of Industrial & Management Optimization, 2021, 17 (1) : 261-277. doi: 10.3934/jimo.2019110 |
[16] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
[17] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021007 |
[18] |
Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018 |
[19] |
Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363 |
[20] |
Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020375 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]