
-
Previous Article
A robust computational framework for analyzing fractional dynamical systems
- DCDS-S Home
- This Issue
-
Next Article
Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition
Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative
1. | Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran |
2. | Department of Mathematical Sciences, University of South Africa, UNISA 0003, South Africa |
3. | Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 110122, Taiwan |
In recent years, a new definition of fractional derivative which has a nonlocal and non-singular kernel has been proposed by Atangana and Baleanu. This new definition is called the Atangana-Baleanu derivative. In this paper, we present a new technique to obtain the numerical solution of advection-diffusion equation containing Atangana-Baleanu derivative. For this purpose, we use the operational matrix of fractional integral based on Genocchi polynomials. An error bound is given for the approximation of a bivariate function using Genocchi polynomials. Finally, some examples are given to illustrate the applicability and efficiency of the proposed method.
References:
[1] |
A. Alsaedi, D. Baleanu, S. Etemad and S. Rezapour, On coupled systems of time–fractional differential problems by using a new fractional derivative, Journal of Function Spaces, 2016 (2015), 8 pp.
doi: 10.1155/2016/4626940. |
[2] |
A. Atangana and D. Baleanu,
New fractional derivatives with nonlocal and non–singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.
doi: 10.2298/TSCI160111018A. |
[3] |
A. Atangana and D. Baleanu, Caputo–Fabrizio derivative applied to groundwater flow within a confined aquifer, J. Eng. Mech., 143 (2016).
doi: 10.1061/(ASCE)EM.1943-7889.0001091. |
[4] |
A. Atangana and Z. Hammouch, Fractional calculus with power law: The cradle of our ancestors, Eur. Phys. J. Plus, 134 (2019), 429.
doi: 10.1140/epjp/i2019-12777-8. |
[5] |
A. Atangana and I. Koca,
Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order, Chaos, Solitons and Fractals, 89 (2016), 447-454.
doi: 10.1016/j.chaos.2016.02.012. |
[6] |
D. Baleanu, H. Mohammadi and S. Rezapour, Analysis of the model of HIV–1 infection of CD4+ T–cell with a new approach of fractional derivative, Adv. Differ. Equ., 2020 (2020).
doi: 10.1186/s13662-020-02544-w. |
[7] |
M. Caputo and M. Fabrizio,
Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 1-11.
doi: 10.18576/pfda/020101. |
[8] |
Y. Chatibi, E. H. El Kinani and A. Ouhadan,
Variational calculus involving nonlocal fractional derivative with Mittag–Leffler kernel, Chaos, Solitons and Fractals, 118 (2019), 117-121.
doi: 10.1016/j.chaos.2018.11.017. |
[9] |
M. Dehghan,
Weighted finite difference techniques for the one–dimensional advection–diffusion equation, Appl. Math. Comput., 147 (2004), 307-319.
doi: 10.1016/S0096-3003(02)00667-7. |
[10] |
R. M. Ganji and H. Jafari, A numerical approach for multi–variable orders differential equations using Jacobi polynomials, International Journal of Applied and Computational Mathematics, 5 (2019).
doi: 10.1007/s40819-019-0610-6. |
[11] |
R. M. Ganji and H. Jafari,
Numerical solution of variable order integro–differential equations, Advanced Math. Models & Applications, 4 (2019), 64-69.
|
[12] |
R. M. Ganji and H. Jafari and A. R. Adem, A numerical scheme to solve variable order diffusion–wave equations, Thermal Science, (2019), 371–371.
doi: 10.2298/TSCI190729371M. |
[13] |
R. M. Ganji and H. Jafari and D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel, Chaos, Solitons and Fractals, 130 (2020), 109405.
doi: 10.1016/j.chaos.2019.109405. |
[14] |
M. M. Ghalib, A. A. Zafar, Z. Hammouch, M. B. Riaz and K. Shabbir,
Analytical results on the unsteady rotational flow of fractional–order non–Newtonian fluids with shear stress on the boundary, Discrete and Continuous Dynamical Systems - S, 13 (2020), 683-693.
doi: 10.3934/dcdss.2020037. |
[15] |
M. M. Ghalib, A. A. Zafar, M. B. Riaz, Z. Hammouch and K. Shabbir, Analytical approach for the steady MHD conjugate viscous fluid flow in a porous medium with nonsingular fractional derivative, Physica A: Statistical Mechanics and its Applications, (2020), 123941.
doi: 10.1016/j.physa.2019.123941. |
[16] |
A. Jajarmi, S. Arshad and D. Baleanu, A new fractional modelling and control strategy for the outbreak of dengue fever, Physica A: Statistical Mechanics and its Applications, 535 (2019).
doi: 10.1016/j.physa.2019.122524. |
[17] |
A. Jajarmi, D. Baleanu, S. S. Sajjadi and J. H. Asad, A new feature of the fractional Euler–Lagrange equations for a coupled oscillator using a nonsingular operator approach, Frontiers in Physics, 7 (2019).
doi: 10.3389/fphy.2019.00196. |
[18] |
I. Koca,
Numerical analysis of coupled fractional differential equations with Atangana–Baleanu fractional derivative, Discrete and Continuous Dynamical Systems - S, 12 (2018), 475-486.
doi: 10.3934/dcdss.2019031. |
[19] |
A. Mohebbi and M. Dehghan,
High-order compact solution of the one–dimensional heat and advection–diffusion equations, Appl Math Model, 34 (2010), 3071-3084.
doi: 10.1016/j.apm.2010.01.013. |
[20] |
S. Nemati, P. M. Lima and Y. Ordokhani,
Numerical solution of a class of two–dimensional nonlinear Volterra integral equations using Legendre polynomials, Journal of Computational and Applied Mathematics, 242 (2013), 53-69.
doi: 10.1016/j.cam.2012.10.021. |
[21] |
F. Ozpinar and F. B. M. Belgacem,
The discrete homotopy perturbation Sumudu transform method for solving partial difference equations, Discrete and Continuous Dynamical Systems - S, 12 (2019), 615-624.
doi: 10.3934/dcdss.2019039. |
[22] |
K. M. Owolabi and Z. Hammouch,
Spatiotemporal patterns in the Belousov–Zhabotinskii reaction systems with Atangana–Baleanu fractional order derivative, Physica A: Statistical Mechanics and its Applications, 523 (2019), 1072-1090.
doi: 10.1016/j.physa.2019.04.017. |
[23] |
P. Roache, Computational Fluid Dynamics, Hermosa Press, Albuquerque, NM, 1972.
![]() ![]() |
[24] |
S.S. Roshan, H. Jafari and D. Baleanu,
Solving FDEs with Caputo–Fabrizio derivative by operational matrix based on Genocchi polynomials, Mathematical Methods in the Applied Sciences, 4 (2018), 9134-9141.
doi: 10.1002/mma.5098. |
[25] |
H. M. Srivastava and K. M. Saad,
Some new models of the time-fractional gas dynamics equation, Advanced Math. Models & Applications, 3 (2018), 5-17.
|
[26] |
H. Tajadodi, A Numerical approach of fractional advection–diffusion equation with Atangana–Baleanu derivative, Chaos, Solitons and Fractals, 130 (2020), 109527.
doi: 10.1016/j.chaos.2019.109527. |
[27] |
S. Ucar, E. Ucar, N. Ozdemir and Z. Hammouch,
Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative, Chaos, Solitons and Fractals, 118 (2019), 300-306.
doi: 10.1016/j.chaos.2018.12.003. |
[28] |
M. Zerroukat, K. Djidjeli and A. Charafi,
Explicit and implicit meshless methods for linear advection–diffusion–type partial differential equations, Int. J. Numer. Meth. Eng., 48 (2000), 19-35.
doi: 10.1002/(SICI)1097-0207(20000510)48:1<19::AID-NME862>3.0.CO;2-3. |
show all references
References:
[1] |
A. Alsaedi, D. Baleanu, S. Etemad and S. Rezapour, On coupled systems of time–fractional differential problems by using a new fractional derivative, Journal of Function Spaces, 2016 (2015), 8 pp.
doi: 10.1155/2016/4626940. |
[2] |
A. Atangana and D. Baleanu,
New fractional derivatives with nonlocal and non–singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.
doi: 10.2298/TSCI160111018A. |
[3] |
A. Atangana and D. Baleanu, Caputo–Fabrizio derivative applied to groundwater flow within a confined aquifer, J. Eng. Mech., 143 (2016).
doi: 10.1061/(ASCE)EM.1943-7889.0001091. |
[4] |
A. Atangana and Z. Hammouch, Fractional calculus with power law: The cradle of our ancestors, Eur. Phys. J. Plus, 134 (2019), 429.
doi: 10.1140/epjp/i2019-12777-8. |
[5] |
A. Atangana and I. Koca,
Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order, Chaos, Solitons and Fractals, 89 (2016), 447-454.
doi: 10.1016/j.chaos.2016.02.012. |
[6] |
D. Baleanu, H. Mohammadi and S. Rezapour, Analysis of the model of HIV–1 infection of CD4+ T–cell with a new approach of fractional derivative, Adv. Differ. Equ., 2020 (2020).
doi: 10.1186/s13662-020-02544-w. |
[7] |
M. Caputo and M. Fabrizio,
Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 1-11.
doi: 10.18576/pfda/020101. |
[8] |
Y. Chatibi, E. H. El Kinani and A. Ouhadan,
Variational calculus involving nonlocal fractional derivative with Mittag–Leffler kernel, Chaos, Solitons and Fractals, 118 (2019), 117-121.
doi: 10.1016/j.chaos.2018.11.017. |
[9] |
M. Dehghan,
Weighted finite difference techniques for the one–dimensional advection–diffusion equation, Appl. Math. Comput., 147 (2004), 307-319.
doi: 10.1016/S0096-3003(02)00667-7. |
[10] |
R. M. Ganji and H. Jafari, A numerical approach for multi–variable orders differential equations using Jacobi polynomials, International Journal of Applied and Computational Mathematics, 5 (2019).
doi: 10.1007/s40819-019-0610-6. |
[11] |
R. M. Ganji and H. Jafari,
Numerical solution of variable order integro–differential equations, Advanced Math. Models & Applications, 4 (2019), 64-69.
|
[12] |
R. M. Ganji and H. Jafari and A. R. Adem, A numerical scheme to solve variable order diffusion–wave equations, Thermal Science, (2019), 371–371.
doi: 10.2298/TSCI190729371M. |
[13] |
R. M. Ganji and H. Jafari and D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel, Chaos, Solitons and Fractals, 130 (2020), 109405.
doi: 10.1016/j.chaos.2019.109405. |
[14] |
M. M. Ghalib, A. A. Zafar, Z. Hammouch, M. B. Riaz and K. Shabbir,
Analytical results on the unsteady rotational flow of fractional–order non–Newtonian fluids with shear stress on the boundary, Discrete and Continuous Dynamical Systems - S, 13 (2020), 683-693.
doi: 10.3934/dcdss.2020037. |
[15] |
M. M. Ghalib, A. A. Zafar, M. B. Riaz, Z. Hammouch and K. Shabbir, Analytical approach for the steady MHD conjugate viscous fluid flow in a porous medium with nonsingular fractional derivative, Physica A: Statistical Mechanics and its Applications, (2020), 123941.
doi: 10.1016/j.physa.2019.123941. |
[16] |
A. Jajarmi, S. Arshad and D. Baleanu, A new fractional modelling and control strategy for the outbreak of dengue fever, Physica A: Statistical Mechanics and its Applications, 535 (2019).
doi: 10.1016/j.physa.2019.122524. |
[17] |
A. Jajarmi, D. Baleanu, S. S. Sajjadi and J. H. Asad, A new feature of the fractional Euler–Lagrange equations for a coupled oscillator using a nonsingular operator approach, Frontiers in Physics, 7 (2019).
doi: 10.3389/fphy.2019.00196. |
[18] |
I. Koca,
Numerical analysis of coupled fractional differential equations with Atangana–Baleanu fractional derivative, Discrete and Continuous Dynamical Systems - S, 12 (2018), 475-486.
doi: 10.3934/dcdss.2019031. |
[19] |
A. Mohebbi and M. Dehghan,
High-order compact solution of the one–dimensional heat and advection–diffusion equations, Appl Math Model, 34 (2010), 3071-3084.
doi: 10.1016/j.apm.2010.01.013. |
[20] |
S. Nemati, P. M. Lima and Y. Ordokhani,
Numerical solution of a class of two–dimensional nonlinear Volterra integral equations using Legendre polynomials, Journal of Computational and Applied Mathematics, 242 (2013), 53-69.
doi: 10.1016/j.cam.2012.10.021. |
[21] |
F. Ozpinar and F. B. M. Belgacem,
The discrete homotopy perturbation Sumudu transform method for solving partial difference equations, Discrete and Continuous Dynamical Systems - S, 12 (2019), 615-624.
doi: 10.3934/dcdss.2019039. |
[22] |
K. M. Owolabi and Z. Hammouch,
Spatiotemporal patterns in the Belousov–Zhabotinskii reaction systems with Atangana–Baleanu fractional order derivative, Physica A: Statistical Mechanics and its Applications, 523 (2019), 1072-1090.
doi: 10.1016/j.physa.2019.04.017. |
[23] |
P. Roache, Computational Fluid Dynamics, Hermosa Press, Albuquerque, NM, 1972.
![]() ![]() |
[24] |
S.S. Roshan, H. Jafari and D. Baleanu,
Solving FDEs with Caputo–Fabrizio derivative by operational matrix based on Genocchi polynomials, Mathematical Methods in the Applied Sciences, 4 (2018), 9134-9141.
doi: 10.1002/mma.5098. |
[25] |
H. M. Srivastava and K. M. Saad,
Some new models of the time-fractional gas dynamics equation, Advanced Math. Models & Applications, 3 (2018), 5-17.
|
[26] |
H. Tajadodi, A Numerical approach of fractional advection–diffusion equation with Atangana–Baleanu derivative, Chaos, Solitons and Fractals, 130 (2020), 109527.
doi: 10.1016/j.chaos.2019.109527. |
[27] |
S. Ucar, E. Ucar, N. Ozdemir and Z. Hammouch,
Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative, Chaos, Solitons and Fractals, 118 (2019), 300-306.
doi: 10.1016/j.chaos.2018.12.003. |
[28] |
M. Zerroukat, K. Djidjeli and A. Charafi,
Explicit and implicit meshless methods for linear advection–diffusion–type partial differential equations, Int. J. Numer. Meth. Eng., 48 (2000), 19-35.
doi: 10.1002/(SICI)1097-0207(20000510)48:1<19::AID-NME862>3.0.CO;2-3. |




M=3 | M=6 | |
M=3 | M=6 | |
M=3 | M=6 | |
M=3 | M=6 | |
M=3 | M=6 | |
M=3 | M=6 | |
[1] |
Editorial Office. WITHDRAWN: Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2020173 |
[2] |
Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 937-956. doi: 10.3934/dcdss.2020055 |
[3] |
Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031 |
[4] |
G. M. Bahaa. Generalized variational calculus in terms of multi-parameters involving Atangana-Baleanu's derivatives and application. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 485-501. doi: 10.3934/dcdss.2020027 |
[5] |
Kashif Ali Abro, Ilyas Khan. MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivatives. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 377-387. doi: 10.3934/dcdss.2020021 |
[6] |
Muhammad Bilal Riaz, Syed Tauseef Saeed. Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3719-3746. doi: 10.3934/dcdss.2020430 |
[7] |
Qing Tang. On an optimal control problem of time-fractional advection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 761-779. doi: 10.3934/dcdsb.2019266 |
[8] |
Assyr Abdulle. Multiscale methods for advection-diffusion problems. Conference Publications, 2005, 2005 (Special) : 11-21. doi: 10.3934/proc.2005.2005.11 |
[9] |
Lena-Susanne Hartmann, Ilya Pavlyukevich. Advection-diffusion equation on a half-line with boundary Lévy noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 637-655. doi: 10.3934/dcdsb.2018200 |
[10] |
Michael Taylor. Random walks, random flows, and enhanced diffusivity in advection-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1261-1287. doi: 10.3934/dcdsb.2012.17.1261 |
[11] |
Alexandre Caboussat, Roland Glowinski. A Numerical Method for a Non-Smooth Advection-Diffusion Problem Arising in Sand Mechanics. Communications on Pure and Applied Analysis, 2009, 8 (1) : 161-178. doi: 10.3934/cpaa.2009.8.161 |
[12] |
Patrick Henning, Mario Ohlberger. The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks and Heterogeneous Media, 2010, 5 (4) : 711-744. doi: 10.3934/nhm.2010.5.711 |
[13] |
Patrick Henning, Mario Ohlberger. A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1393-1420. doi: 10.3934/dcdss.2016056 |
[14] |
Masahiro Yamamoto. Uniqueness for inverse problem of determining fractional orders for time-fractional advection-diffusion equations. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022017 |
[15] |
Stefan Possanner, Claudia Negulescu. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinetic and Related Models, 2011, 4 (4) : 1159-1191. doi: 10.3934/krm.2011.4.1159 |
[16] |
Janos Kollar. Polynomials with integral coefficients, equivalent to a given polynomial. Electronic Research Announcements, 1997, 3: 17-27. |
[17] |
Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 395-426. doi: 10.3934/naco.2021013 |
[18] |
Purshottam N. Agrawal, Thakur Ashok K. Sinha, Avinash Sharma. Convergence of derivative of Szász type operators involving Charlier polynomials. Mathematical Foundations of Computing, 2022, 5 (1) : 1-15. doi: 10.3934/mfc.2021016 |
[19] |
Joshua Du, Jun Ji. An integral representation of the determinant of a matrix and its applications. Conference Publications, 2005, 2005 (Special) : 225-232. doi: 10.3934/proc.2005.2005.225 |
[20] |
Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021026 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]