doi: 10.3934/dcdss.2020445

Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian

a. 

School of Mathematics and Computer Science, Shanxi Normal University, Linfen, Shanxi 041004, China

b. 

Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

* Corresponding author: Bashir Ahmad

Received  May 2020 Revised  July 2020 Published  November 2020

In this paper, we investigate radial symmetry and monotonicity of positive solutions to a logarithmic Choquard equation involving a generalized nonlinear tempered fractional $ p $-Laplacian operator by applying the direct method of moving planes. We first introduce a new kind of tempered fractional $ p $-Laplacian $ (-\Delta-\lambda_{f})_{p}^{s} $ based on tempered fractional Laplacian $ (\Delta+\lambda)^{\beta/2} $, which was originally defined in [3] by Deng et.al [Boundary problems for the fractional and tempered fractional operators, Multiscale Model. Simul., 16(1)(2018), 125-149]. Then we discuss the decay of solutions at infinity and narrow region principle, which play a key role in obtaining the main result by the process of moving planes.

Citation: Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020445
References:
[1]

J. Bertoin, Lévy Processes. Cambridge Tracts in Mathematics, vol. 121, Cambridge University Press, Cambridge, 1996.  Google Scholar

[2]

W. Chen and C. Li, Maximum principles for the fractional $p$-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar

[3]

W. DengB. LiW. Tian and P. Zhang, Boundary problems for the fractional and tempered fractional operators, Multiscale Model. Simul., 16 (2018), 125-149.  doi: 10.1137/17M1116222.  Google Scholar

[4]

P. d'AveniaG. Siciliano and M. Squassina, On fractional Choquard equations, Math. Models Methods Appl. Sci., 25 (2015), 1447-1476.  doi: 10.1142/S0218202515500384.  Google Scholar

[5]

S. Duo and Y. Zhang, Numerical approximations for the tempered fractional Laplacian: Error analysis and applications, J. Sci. Comput., 81 (2019), 569-593.  doi: 10.1007/s10915-019-01029-7.  Google Scholar

[6]

D. KumarJ. Singh and D. Baleanu, A new fractional model for convective straight fins with temperature-dependent thermal conductivity, Thermal Science, 22 (2018), 2791-2802.  doi: 10.2298/TSCI170129096K.  Google Scholar

[7]

D. KumarJ. Singh and D. Baleanu, On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Math. Methods Appl. Sci., 43 (2020), 443-457.  doi: 10.1002/mma.5903.  Google Scholar

[8]

C. LiW. Deng and L. Zhao, Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1989-2015.  doi: 10.3934/dcdsb.2019026.  Google Scholar

[9]

V. Moroz and J. V. Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.  Google Scholar

[10]

P. Mohammed, M. Sarikaya and D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 595. doi: 10.3390/sym12040595.  Google Scholar

[11]

L. Ma and Z. Zhang, Symmetry of positive solutions for Choquard equations with fractional $p$-Laplacian, Nonlinear Anal., 182 (2019), 248-262.  doi: 10.1016/j.na.2018.12.015.  Google Scholar

[12]

H. M. Srivastava, V. P. Dubey, R. Kumar, J. Singh, D. Kumar and D. Baleanu, An efficient computational approach for a fractional-order biological population model with carrying capacity, Chaos Solitons Fractals, 138 (2020), 109880, 13 pp. doi: 10.1016/j.chaos.2020.109880.  Google Scholar

[13]

J. Sun, D. Nie and W. Deng, Algorithm implementation and numerical analysis for the two-dimensional tempered fractional Laplacian, preprint, 2018, arXiv: 1802.02349. Google Scholar

[14]

B. ShiriG. Wu and D. Baleanu, Collocation methods for terminal value problems of tempered fractional differential equations, Appl. Numer. Math., 156 (2020), 385-395.  doi: 10.1016/j.apnum.2020.05.007.  Google Scholar

[15]

G. WangX. RenZ. Bai and W. Hou, Radial symmetry of standing waves for nonlinear fractional Hardy-Schrödinger equation, Appl. Math. Lett., 96 (2019), 131-137.  doi: 10.1016/j.aml.2019.04.024.  Google Scholar

[16]

G. Wang and X. Ren, Radial symmetry of standing waves for nonlinear fractional Laplacian Hardy-Schrödinger systems, Appl. Math. Lett., 110 (2020), 106560, 8 pp. doi: 10.1016/j.aml.2020.106560.  Google Scholar

[17]

L. Zhang, B. Ahmad, G. Wang and X. Ren, Radial symmetry of solution for fractional $p-$Laplacian system, Nonlinear Anal., 196 (2020), 111801, 16 pp. doi: 10.1016/j.na.2020.111801.  Google Scholar

[18]

Z. Zhang, W. Deng and H. Fan, Finite difference schemes for the tempered fractional Laplacian, Numer. Math. Theory Methods Appl. 12 (2019), 492-–516. doi: 10.4208/nmtma.OA-2017-0141.  Google Scholar

[19]

Z. ZhangW. Deng and GE. Karniadakis, A Riesz basis Galerkin method for the tempered fractional Laplacian, SIAM J. Numer. Anal., 56 (2018), 3010-3039.  doi: 10.1137/17M1151791.  Google Scholar

[20]

L. Zhang and W. Hou, Standing waves of nonlinear fractional p-Laplacian Schrödinger equation involving logarithmic nonlinearity, Appl. Math. Lett., 102 (2020), 106149, 6 pp. doi: 10.1016/j.aml.2019.106149.  Google Scholar

show all references

References:
[1]

J. Bertoin, Lévy Processes. Cambridge Tracts in Mathematics, vol. 121, Cambridge University Press, Cambridge, 1996.  Google Scholar

[2]

W. Chen and C. Li, Maximum principles for the fractional $p$-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar

[3]

W. DengB. LiW. Tian and P. Zhang, Boundary problems for the fractional and tempered fractional operators, Multiscale Model. Simul., 16 (2018), 125-149.  doi: 10.1137/17M1116222.  Google Scholar

[4]

P. d'AveniaG. Siciliano and M. Squassina, On fractional Choquard equations, Math. Models Methods Appl. Sci., 25 (2015), 1447-1476.  doi: 10.1142/S0218202515500384.  Google Scholar

[5]

S. Duo and Y. Zhang, Numerical approximations for the tempered fractional Laplacian: Error analysis and applications, J. Sci. Comput., 81 (2019), 569-593.  doi: 10.1007/s10915-019-01029-7.  Google Scholar

[6]

D. KumarJ. Singh and D. Baleanu, A new fractional model for convective straight fins with temperature-dependent thermal conductivity, Thermal Science, 22 (2018), 2791-2802.  doi: 10.2298/TSCI170129096K.  Google Scholar

[7]

D. KumarJ. Singh and D. Baleanu, On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Math. Methods Appl. Sci., 43 (2020), 443-457.  doi: 10.1002/mma.5903.  Google Scholar

[8]

C. LiW. Deng and L. Zhao, Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1989-2015.  doi: 10.3934/dcdsb.2019026.  Google Scholar

[9]

V. Moroz and J. V. Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.  Google Scholar

[10]

P. Mohammed, M. Sarikaya and D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 595. doi: 10.3390/sym12040595.  Google Scholar

[11]

L. Ma and Z. Zhang, Symmetry of positive solutions for Choquard equations with fractional $p$-Laplacian, Nonlinear Anal., 182 (2019), 248-262.  doi: 10.1016/j.na.2018.12.015.  Google Scholar

[12]

H. M. Srivastava, V. P. Dubey, R. Kumar, J. Singh, D. Kumar and D. Baleanu, An efficient computational approach for a fractional-order biological population model with carrying capacity, Chaos Solitons Fractals, 138 (2020), 109880, 13 pp. doi: 10.1016/j.chaos.2020.109880.  Google Scholar

[13]

J. Sun, D. Nie and W. Deng, Algorithm implementation and numerical analysis for the two-dimensional tempered fractional Laplacian, preprint, 2018, arXiv: 1802.02349. Google Scholar

[14]

B. ShiriG. Wu and D. Baleanu, Collocation methods for terminal value problems of tempered fractional differential equations, Appl. Numer. Math., 156 (2020), 385-395.  doi: 10.1016/j.apnum.2020.05.007.  Google Scholar

[15]

G. WangX. RenZ. Bai and W. Hou, Radial symmetry of standing waves for nonlinear fractional Hardy-Schrödinger equation, Appl. Math. Lett., 96 (2019), 131-137.  doi: 10.1016/j.aml.2019.04.024.  Google Scholar

[16]

G. Wang and X. Ren, Radial symmetry of standing waves for nonlinear fractional Laplacian Hardy-Schrödinger systems, Appl. Math. Lett., 110 (2020), 106560, 8 pp. doi: 10.1016/j.aml.2020.106560.  Google Scholar

[17]

L. Zhang, B. Ahmad, G. Wang and X. Ren, Radial symmetry of solution for fractional $p-$Laplacian system, Nonlinear Anal., 196 (2020), 111801, 16 pp. doi: 10.1016/j.na.2020.111801.  Google Scholar

[18]

Z. Zhang, W. Deng and H. Fan, Finite difference schemes for the tempered fractional Laplacian, Numer. Math. Theory Methods Appl. 12 (2019), 492-–516. doi: 10.4208/nmtma.OA-2017-0141.  Google Scholar

[19]

Z. ZhangW. Deng and GE. Karniadakis, A Riesz basis Galerkin method for the tempered fractional Laplacian, SIAM J. Numer. Anal., 56 (2018), 3010-3039.  doi: 10.1137/17M1151791.  Google Scholar

[20]

L. Zhang and W. Hou, Standing waves of nonlinear fractional p-Laplacian Schrödinger equation involving logarithmic nonlinearity, Appl. Math. Lett., 102 (2020), 106149, 6 pp. doi: 10.1016/j.aml.2019.106149.  Google Scholar

[1]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[2]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[3]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[4]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[5]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

[6]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[7]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[8]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[9]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[10]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[11]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[12]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[13]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[14]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[15]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[16]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[17]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[18]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[19]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

[20]

Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021007

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (24)
  • HTML views (70)
  • Cited by (0)

Other articles
by authors

[Back to Top]