
-
Previous Article
Synchronization analysis of drive-response multi-layer dynamical networks with additive couplings and stochastic perturbations
- DCDS-S Home
- This Issue
-
Next Article
Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms
The algorithmic numbers in non-archimedean numerical computing environments
1. | Department of Mathematics, University of Pisa, 56127 Tuscany, IT |
2. | Department of Information Engineering, University of Pisa, 56126 Tuscany, IT |
There are many natural phenomena that can best be described by the use of infinitesimal and infinite numbers (see e.g. [
References:
[1] |
A. Albeverio, J. E. Fenstad, R. Høegh-Krohn and T. Lindstrøm, Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Dover Publications, Princeton, 2009. Google Scholar |
[2] |
V. Benci, I Numeri e gli Insiemi Etichettati, Laterza, Bari, Italia, 1995. Conferenze del seminario di matematica dell' Università di Bari, vol. 261, pp. 29. Google Scholar |
[3] |
V. Benci, An algebraic approach to nonstandard analysis, In G. Buttazzo, A. Marino, and M.K.V. Murthy, editors, Calculus of Variations and Partial Differential Equations: Topics on Geometrical Evolution Problems and Degree Theory, pages 285–326. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.
doi: 10.1007/978-3-642-57186-2_12. |
[4] |
V. Benci, An algebraic approach to nonstandard analysis, In G. Buttazzo, editor, Calculus of Variations and Partial differential equations, volume 4 of 5, chapter 8, pages 285–326. Springer, Berlin, 2000. |
[5] |
V. Benci,
Ultrafunctions and generalized solutions, Adv. Nonlinear Studies, 13 (2013), 461-486.
doi: 10.1515/ans-2013-0212. |
[6] |
V. Benci, Alla Scoperta dei Numeri Infinitesimi, Lezioni di Analisi Matematica Esposte in un Campo Non-Archimedeo, Aracne Editrice, Rome, 2018. |
[7] |
V. Benci and M. Di Nasso,
Numerosities of labelled sets: A new way of counting, Adv. Math., 173 (2003), 50-67.
doi: 10.1016/S0001-8708(02)00012-9. |
[8] |
V. Benci and M. Di Nasso, How to Measure the Infinite: Mathematics with Infinite and Infinitesimal Numbers, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019. |
[9] |
V. Benci, M. Di Nasso and M. Forti,
An aristotelian notion of size, Ann. Pure Appl. Logic, 143 (2006), 43-53.
doi: 10.1016/j.apal.2006.01.008. |
[10] |
V. Benci and M. Forti, The Euclidean numbers, arXiv: 1702.04163v2, 2018. Google Scholar |
[11] |
V. Benci, M. Forti and M. Di Nasso, The eightfold path to nonstandard analysis, In D. A. Ross N. J. Cutland, M. Di Nasso, editor, Nonstandard Methods and Applications in Mathematics, volume 25 of Lecture Notes in Logic, pages 3–44. Association for Symbolic Logic, AK Peters, Wellesley, MA, 2006. |
[12] |
V. Benci and P. Freguglia, Alcune osservazioni sulla matematica non archimedea, Matem. Cultura e Soc., RUMI, 1 (2016), 105-122. Google Scholar |
[13] |
V. Benci and L. Luperi Baglini,
Ultrafunctions and applications, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 593-616.
doi: 10.3934/dcdss.2014.7.593. |
[14] |
M. Cococcioni, A. Cudazzo, M. Pappalardo and Y. D. Sergeyev, Solving the Lexicographic Multi-Objective Mixed-Integer Linear Programming Problem using Branch-and-Bound and Grossone Methodology, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105177, 20 pp.
doi: 10.1016/j.cnsns.2020.105177. |
[15] |
M. Cococcioni and L. Fiaschi, The Big-M method with the Numerical Infinite $M$, Optimization Letters, 2020
doi: 10.1007/s11590-020-01644-6. |
[16] |
M. Cococcioni, M. Pappalardo and Y. D. Sergeyev,
Lexicographic Multi-Objective Linear Programming using Grossone Methodology: Theory and Algorithm, Applied Mathematics and Computation, 318 (2018), 298-311.
doi: 10.1016/j.amc.2017.05.058. |
[17] |
G. B. Dantzig and M. N. Thapa, Linear Programming 2: Theory and Extensions, Springer-Verlag, New York, 2003. |
[18] |
L. Fiaschi and M. Cococcioni, Numerical Asymptotic Results in Game Theory using Sergeyev's Infinity Computing, International Journal of Unconventional Computing, 14 (2018), 1-25. Google Scholar |
[19] |
L. Fiaschi and M. Cococcioni, Non-Archimedean Game Theory: A Numerical Approach, Applied Mathematics and Computation, 2020, 125356.
doi: 10.1016/j.amc.2020.125356. |
[20] |
P. Fletcher, K. Hrbacek, V. Kanovei, M. G. Katz, C. Lobry and S. Sanders,
Approaches to analysis following Robinson, Nelson and others, Real Analysis Exchange, 42 (2017), 193-251.
doi: 10.14321/realanalexch.42.2.0193. |
[21] |
L. Lai, L. Fiaschi and M. Cococcioni, Solving Mixed Pareto-Lexicographic Multi-Objective Optimization Problems: The Case of Priority Chains, Swarm and Evolutionary Computation, 55 (2020), 100687.
doi: 10.1016/j.swevo.2020.100687. |
[22] |
T. Levi-Civita, Sugli infiniti ed infinitesimi attuali quali elementi analitici, Atti del R. Istituto Veneto di Scienze Lettere ed Arti, Venezia, Series 7, 1892. Google Scholar |
[23] |
E. Nelson, Radically Elementary Probability Theory, Princeton University Press, Princeton, New Jersey, 1987.
doi: 10.1515/9781400882144.![]() ![]() |
[24] |
K. Ogata, Modern Control Engineering, Prentice Hall, New Jersey, 5 edition, 2010. Google Scholar |
[25] |
Y. D. Sergeyev,
Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems, EMS Surveys in Mathematical Sciences, 4 (2017), 219-320.
doi: 10.4171/EMSS/4-2-3. |
show all references
References:
[1] |
A. Albeverio, J. E. Fenstad, R. Høegh-Krohn and T. Lindstrøm, Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Dover Publications, Princeton, 2009. Google Scholar |
[2] |
V. Benci, I Numeri e gli Insiemi Etichettati, Laterza, Bari, Italia, 1995. Conferenze del seminario di matematica dell' Università di Bari, vol. 261, pp. 29. Google Scholar |
[3] |
V. Benci, An algebraic approach to nonstandard analysis, In G. Buttazzo, A. Marino, and M.K.V. Murthy, editors, Calculus of Variations and Partial Differential Equations: Topics on Geometrical Evolution Problems and Degree Theory, pages 285–326. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.
doi: 10.1007/978-3-642-57186-2_12. |
[4] |
V. Benci, An algebraic approach to nonstandard analysis, In G. Buttazzo, editor, Calculus of Variations and Partial differential equations, volume 4 of 5, chapter 8, pages 285–326. Springer, Berlin, 2000. |
[5] |
V. Benci,
Ultrafunctions and generalized solutions, Adv. Nonlinear Studies, 13 (2013), 461-486.
doi: 10.1515/ans-2013-0212. |
[6] |
V. Benci, Alla Scoperta dei Numeri Infinitesimi, Lezioni di Analisi Matematica Esposte in un Campo Non-Archimedeo, Aracne Editrice, Rome, 2018. |
[7] |
V. Benci and M. Di Nasso,
Numerosities of labelled sets: A new way of counting, Adv. Math., 173 (2003), 50-67.
doi: 10.1016/S0001-8708(02)00012-9. |
[8] |
V. Benci and M. Di Nasso, How to Measure the Infinite: Mathematics with Infinite and Infinitesimal Numbers, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019. |
[9] |
V. Benci, M. Di Nasso and M. Forti,
An aristotelian notion of size, Ann. Pure Appl. Logic, 143 (2006), 43-53.
doi: 10.1016/j.apal.2006.01.008. |
[10] |
V. Benci and M. Forti, The Euclidean numbers, arXiv: 1702.04163v2, 2018. Google Scholar |
[11] |
V. Benci, M. Forti and M. Di Nasso, The eightfold path to nonstandard analysis, In D. A. Ross N. J. Cutland, M. Di Nasso, editor, Nonstandard Methods and Applications in Mathematics, volume 25 of Lecture Notes in Logic, pages 3–44. Association for Symbolic Logic, AK Peters, Wellesley, MA, 2006. |
[12] |
V. Benci and P. Freguglia, Alcune osservazioni sulla matematica non archimedea, Matem. Cultura e Soc., RUMI, 1 (2016), 105-122. Google Scholar |
[13] |
V. Benci and L. Luperi Baglini,
Ultrafunctions and applications, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 593-616.
doi: 10.3934/dcdss.2014.7.593. |
[14] |
M. Cococcioni, A. Cudazzo, M. Pappalardo and Y. D. Sergeyev, Solving the Lexicographic Multi-Objective Mixed-Integer Linear Programming Problem using Branch-and-Bound and Grossone Methodology, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105177, 20 pp.
doi: 10.1016/j.cnsns.2020.105177. |
[15] |
M. Cococcioni and L. Fiaschi, The Big-M method with the Numerical Infinite $M$, Optimization Letters, 2020
doi: 10.1007/s11590-020-01644-6. |
[16] |
M. Cococcioni, M. Pappalardo and Y. D. Sergeyev,
Lexicographic Multi-Objective Linear Programming using Grossone Methodology: Theory and Algorithm, Applied Mathematics and Computation, 318 (2018), 298-311.
doi: 10.1016/j.amc.2017.05.058. |
[17] |
G. B. Dantzig and M. N. Thapa, Linear Programming 2: Theory and Extensions, Springer-Verlag, New York, 2003. |
[18] |
L. Fiaschi and M. Cococcioni, Numerical Asymptotic Results in Game Theory using Sergeyev's Infinity Computing, International Journal of Unconventional Computing, 14 (2018), 1-25. Google Scholar |
[19] |
L. Fiaschi and M. Cococcioni, Non-Archimedean Game Theory: A Numerical Approach, Applied Mathematics and Computation, 2020, 125356.
doi: 10.1016/j.amc.2020.125356. |
[20] |
P. Fletcher, K. Hrbacek, V. Kanovei, M. G. Katz, C. Lobry and S. Sanders,
Approaches to analysis following Robinson, Nelson and others, Real Analysis Exchange, 42 (2017), 193-251.
doi: 10.14321/realanalexch.42.2.0193. |
[21] |
L. Lai, L. Fiaschi and M. Cococcioni, Solving Mixed Pareto-Lexicographic Multi-Objective Optimization Problems: The Case of Priority Chains, Swarm and Evolutionary Computation, 55 (2020), 100687.
doi: 10.1016/j.swevo.2020.100687. |
[22] |
T. Levi-Civita, Sugli infiniti ed infinitesimi attuali quali elementi analitici, Atti del R. Istituto Veneto di Scienze Lettere ed Arti, Venezia, Series 7, 1892. Google Scholar |
[23] |
E. Nelson, Radically Elementary Probability Theory, Princeton University Press, Princeton, New Jersey, 1987.
doi: 10.1515/9781400882144.![]() ![]() |
[24] |
K. Ogata, Modern Control Engineering, Prentice Hall, New Jersey, 5 edition, 2010. Google Scholar |
[25] |
Y. D. Sergeyev,
Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems, EMS Surveys in Mathematical Sciences, 4 (2017), 219-320.
doi: 10.4171/EMSS/4-2-3. |

[1] |
Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018 |
[2] |
Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020367 |
[3] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020391 |
[4] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[5] |
Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, , () : -. doi: 10.3934/era.2021001 |
[6] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[7] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[8] |
Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008 |
[9] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[10] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[11] |
Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020179 |
[12] |
Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051 |
[13] |
Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385 |
[14] |
Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021005 |
[15] |
Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251 |
[16] |
Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020178 |
[17] |
Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020346 |
[18] |
Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020457 |
[19] |
Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020446 |
[20] |
Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]