There are many natural phenomena that can best be described by the use of infinitesimal and infinite numbers (see e.g. [
Citation: |
[1] |
A. Albeverio, J. E. Fenstad, R. Høegh-Krohn and T. Lindstrøm, Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Dover Publications, Princeton, 2009.
![]() |
[2] |
V. Benci, I Numeri e gli Insiemi Etichettati, Laterza, Bari, Italia, 1995. Conferenze del seminario di matematica dell' Università di Bari, vol. 261, pp. 29.
![]() |
[3] |
V. Benci, An algebraic approach to nonstandard analysis, In G. Buttazzo, A. Marino, and M.K.V. Murthy, editors, Calculus of Variations and Partial Differential Equations: Topics on Geometrical Evolution Problems and Degree Theory, pages 285–326. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.
doi: 10.1007/978-3-642-57186-2_12.![]() ![]() |
[4] |
V. Benci, An algebraic approach to nonstandard analysis, In G. Buttazzo, editor, Calculus of Variations and Partial differential equations, volume 4 of 5, chapter 8, pages 285–326. Springer, Berlin, 2000.
![]() ![]() |
[5] |
V. Benci, Ultrafunctions and generalized solutions, Adv. Nonlinear Studies, 13 (2013), 461-486.
doi: 10.1515/ans-2013-0212.![]() ![]() ![]() |
[6] |
V. Benci, Alla Scoperta dei Numeri Infinitesimi, Lezioni di Analisi Matematica Esposte in un Campo Non-Archimedeo, Aracne Editrice, Rome, 2018.
![]() ![]() |
[7] |
V. Benci and M. Di Nasso, Numerosities of labelled sets: A new way of counting, Adv. Math., 173 (2003), 50-67.
doi: 10.1016/S0001-8708(02)00012-9.![]() ![]() ![]() |
[8] |
V. Benci and M. Di Nasso, How to Measure the Infinite: Mathematics with Infinite and Infinitesimal Numbers, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019.
![]() ![]() |
[9] |
V. Benci, M. Di Nasso and M. Forti, An aristotelian notion of size, Ann. Pure Appl. Logic, 143 (2006), 43-53.
doi: 10.1016/j.apal.2006.01.008.![]() ![]() ![]() |
[10] |
V. Benci and M. Forti, The Euclidean numbers, arXiv: 1702.04163v2, 2018.
![]() |
[11] |
V. Benci, M. Forti and M. Di Nasso, The eightfold path to nonstandard analysis, In D. A. Ross N. J. Cutland, M. Di Nasso, editor, Nonstandard Methods and Applications in Mathematics, volume 25 of Lecture Notes in Logic, pages 3–44. Association for Symbolic Logic, AK Peters, Wellesley, MA, 2006.
![]() ![]() |
[12] |
V. Benci and P. Freguglia, Alcune osservazioni sulla matematica non archimedea, Matem. Cultura e Soc., RUMI, 1 (2016), 105-122.
![]() |
[13] |
V. Benci and L. Luperi Baglini, Ultrafunctions and applications, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 593-616.
doi: 10.3934/dcdss.2014.7.593.![]() ![]() ![]() |
[14] |
M. Cococcioni, A. Cudazzo, M. Pappalardo and Y. D. Sergeyev, Solving the Lexicographic Multi-Objective Mixed-Integer Linear Programming Problem using Branch-and-Bound and Grossone Methodology, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105177, 20 pp.
doi: 10.1016/j.cnsns.2020.105177.![]() ![]() ![]() |
[15] |
M. Cococcioni and L. Fiaschi, The Big-M method with the Numerical Infinite $M$, Optimization Letters, 2020
doi: 10.1007/s11590-020-01644-6.![]() ![]() |
[16] |
M. Cococcioni, M. Pappalardo and Y. D. Sergeyev, Lexicographic Multi-Objective Linear Programming using Grossone Methodology: Theory and Algorithm, Applied Mathematics and Computation, 318 (2018), 298-311.
doi: 10.1016/j.amc.2017.05.058.![]() ![]() |
[17] |
G. B. Dantzig and M. N. Thapa, Linear Programming 2: Theory and Extensions, Springer-Verlag, New York, 2003.
![]() ![]() |
[18] |
L. Fiaschi and M. Cococcioni, Numerical Asymptotic Results in Game Theory using Sergeyev's Infinity Computing, International Journal of Unconventional Computing, 14 (2018), 1-25.
![]() |
[19] |
L. Fiaschi and M. Cococcioni, Non-Archimedean Game Theory: A Numerical Approach, Applied Mathematics and Computation, 2020, 125356.
doi: 10.1016/j.amc.2020.125356.![]() ![]() |
[20] |
P. Fletcher, K. Hrbacek, V. Kanovei, M. G. Katz, C. Lobry and S. Sanders, Approaches to analysis following Robinson, Nelson and others, Real Analysis Exchange, 42 (2017), 193-251.
doi: 10.14321/realanalexch.42.2.0193.![]() ![]() ![]() |
[21] |
L. Lai, L. Fiaschi and M. Cococcioni, Solving Mixed Pareto-Lexicographic Multi-Objective Optimization Problems: The Case of Priority Chains, Swarm and Evolutionary Computation, 55 (2020), 100687.
doi: 10.1016/j.swevo.2020.100687.![]() ![]() |
[22] |
T. Levi-Civita, Sugli infiniti ed infinitesimi attuali quali elementi analitici, Atti del R. Istituto Veneto di Scienze Lettere ed Arti, Venezia, Series 7, 1892.
![]() |
[23] |
E. Nelson, Radically Elementary Probability Theory, Princeton University Press, Princeton, New Jersey, 1987.
doi: 10.1515/9781400882144.![]() ![]() ![]() |
[24] |
K. Ogata, Modern Control Engineering, Prentice Hall, New Jersey, 5 edition, 2010.
![]() |
[25] |
Y. D. Sergeyev, Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems, EMS Surveys in Mathematical Sciences, 4 (2017), 219-320.
doi: 10.4171/EMSS/4-2-3.![]() ![]() ![]() |