
-
Previous Article
A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II
- DCDS-S Home
- This Issue
-
Next Article
Local smooth solutions of the nonlinear Klein-gordon equation
The algorithmic numbers in non-archimedean numerical computing environments
1. | Department of Mathematics, University of Pisa, 56127 Tuscany, IT |
2. | Department of Information Engineering, University of Pisa, 56126 Tuscany, IT |
There are many natural phenomena that can best be described by the use of infinitesimal and infinite numbers (see e.g. [
References:
[1] |
A. Albeverio, J. E. Fenstad, R. Høegh-Krohn and T. Lindstrøm, Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Dover Publications, Princeton, 2009. |
[2] |
V. Benci, I Numeri e gli Insiemi Etichettati, Laterza, Bari, Italia, 1995. Conferenze del seminario di matematica dell' Università di Bari, vol. 261, pp. 29. |
[3] |
V. Benci, An algebraic approach to nonstandard analysis, In G. Buttazzo, A. Marino, and M.K.V. Murthy, editors, Calculus of Variations and Partial Differential Equations: Topics on Geometrical Evolution Problems and Degree Theory, pages 285–326. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.
doi: 10.1007/978-3-642-57186-2_12. |
[4] |
V. Benci, An algebraic approach to nonstandard analysis, In G. Buttazzo, editor, Calculus of Variations and Partial differential equations, volume 4 of 5, chapter 8, pages 285–326. Springer, Berlin, 2000. |
[5] |
V. Benci,
Ultrafunctions and generalized solutions, Adv. Nonlinear Studies, 13 (2013), 461-486.
doi: 10.1515/ans-2013-0212. |
[6] |
V. Benci, Alla Scoperta dei Numeri Infinitesimi, Lezioni di Analisi Matematica Esposte in un Campo Non-Archimedeo, Aracne Editrice, Rome, 2018. |
[7] |
V. Benci and M. Di Nasso,
Numerosities of labelled sets: A new way of counting, Adv. Math., 173 (2003), 50-67.
doi: 10.1016/S0001-8708(02)00012-9. |
[8] |
V. Benci and M. Di Nasso, How to Measure the Infinite: Mathematics with Infinite and Infinitesimal Numbers, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019. |
[9] |
V. Benci, M. Di Nasso and M. Forti,
An aristotelian notion of size, Ann. Pure Appl. Logic, 143 (2006), 43-53.
doi: 10.1016/j.apal.2006.01.008. |
[10] |
V. Benci and M. Forti, The Euclidean numbers, arXiv: 1702.04163v2, 2018. |
[11] |
V. Benci, M. Forti and M. Di Nasso, The eightfold path to nonstandard analysis, In D. A. Ross N. J. Cutland, M. Di Nasso, editor, Nonstandard Methods and Applications in Mathematics, volume 25 of Lecture Notes in Logic, pages 3–44. Association for Symbolic Logic, AK Peters, Wellesley, MA, 2006. |
[12] |
V. Benci and P. Freguglia,
Alcune osservazioni sulla matematica non archimedea, Matem. Cultura e Soc., RUMI, 1 (2016), 105-122.
|
[13] |
V. Benci and L. Luperi Baglini,
Ultrafunctions and applications, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 593-616.
doi: 10.3934/dcdss.2014.7.593. |
[14] |
M. Cococcioni, A. Cudazzo, M. Pappalardo and Y. D. Sergeyev, Solving the Lexicographic Multi-Objective Mixed-Integer Linear Programming Problem using Branch-and-Bound and Grossone Methodology, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105177, 20 pp.
doi: 10.1016/j.cnsns.2020.105177. |
[15] |
M. Cococcioni and L. Fiaschi, The Big-M method with the Numerical Infinite $M$, Optimization Letters, 2020
doi: 10.1007/s11590-020-01644-6. |
[16] |
M. Cococcioni, M. Pappalardo and Y. D. Sergeyev,
Lexicographic Multi-Objective Linear Programming using Grossone Methodology: Theory and Algorithm, Applied Mathematics and Computation, 318 (2018), 298-311.
doi: 10.1016/j.amc.2017.05.058. |
[17] |
G. B. Dantzig and M. N. Thapa, Linear Programming 2: Theory and Extensions, Springer-Verlag, New York, 2003. |
[18] |
L. Fiaschi and M. Cococcioni,
Numerical Asymptotic Results in Game Theory using Sergeyev's Infinity Computing, International Journal of Unconventional Computing, 14 (2018), 1-25.
|
[19] |
L. Fiaschi and M. Cococcioni, Non-Archimedean Game Theory: A Numerical Approach, Applied Mathematics and Computation, 2020, 125356.
doi: 10.1016/j.amc.2020.125356. |
[20] |
P. Fletcher, K. Hrbacek, V. Kanovei, M. G. Katz, C. Lobry and S. Sanders,
Approaches to analysis following Robinson, Nelson and others, Real Analysis Exchange, 42 (2017), 193-251.
doi: 10.14321/realanalexch.42.2.0193. |
[21] |
L. Lai, L. Fiaschi and M. Cococcioni, Solving Mixed Pareto-Lexicographic Multi-Objective Optimization Problems: The Case of Priority Chains, Swarm and Evolutionary Computation, 55 (2020), 100687.
doi: 10.1016/j.swevo.2020.100687. |
[22] |
T. Levi-Civita, Sugli infiniti ed infinitesimi attuali quali elementi analitici, Atti del R. Istituto Veneto di Scienze Lettere ed Arti, Venezia, Series 7, 1892. |
[23] |
E. Nelson, Radically Elementary Probability Theory, Princeton University Press, Princeton, New Jersey, 1987.
doi: 10.1515/9781400882144.![]() ![]() ![]() |
[24] |
K. Ogata, Modern Control Engineering, Prentice Hall, New Jersey, 5 edition, 2010. |
[25] |
Y. D. Sergeyev,
Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems, EMS Surveys in Mathematical Sciences, 4 (2017), 219-320.
doi: 10.4171/EMSS/4-2-3. |
show all references
References:
[1] |
A. Albeverio, J. E. Fenstad, R. Høegh-Krohn and T. Lindstrøm, Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Dover Publications, Princeton, 2009. |
[2] |
V. Benci, I Numeri e gli Insiemi Etichettati, Laterza, Bari, Italia, 1995. Conferenze del seminario di matematica dell' Università di Bari, vol. 261, pp. 29. |
[3] |
V. Benci, An algebraic approach to nonstandard analysis, In G. Buttazzo, A. Marino, and M.K.V. Murthy, editors, Calculus of Variations and Partial Differential Equations: Topics on Geometrical Evolution Problems and Degree Theory, pages 285–326. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.
doi: 10.1007/978-3-642-57186-2_12. |
[4] |
V. Benci, An algebraic approach to nonstandard analysis, In G. Buttazzo, editor, Calculus of Variations and Partial differential equations, volume 4 of 5, chapter 8, pages 285–326. Springer, Berlin, 2000. |
[5] |
V. Benci,
Ultrafunctions and generalized solutions, Adv. Nonlinear Studies, 13 (2013), 461-486.
doi: 10.1515/ans-2013-0212. |
[6] |
V. Benci, Alla Scoperta dei Numeri Infinitesimi, Lezioni di Analisi Matematica Esposte in un Campo Non-Archimedeo, Aracne Editrice, Rome, 2018. |
[7] |
V. Benci and M. Di Nasso,
Numerosities of labelled sets: A new way of counting, Adv. Math., 173 (2003), 50-67.
doi: 10.1016/S0001-8708(02)00012-9. |
[8] |
V. Benci and M. Di Nasso, How to Measure the Infinite: Mathematics with Infinite and Infinitesimal Numbers, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019. |
[9] |
V. Benci, M. Di Nasso and M. Forti,
An aristotelian notion of size, Ann. Pure Appl. Logic, 143 (2006), 43-53.
doi: 10.1016/j.apal.2006.01.008. |
[10] |
V. Benci and M. Forti, The Euclidean numbers, arXiv: 1702.04163v2, 2018. |
[11] |
V. Benci, M. Forti and M. Di Nasso, The eightfold path to nonstandard analysis, In D. A. Ross N. J. Cutland, M. Di Nasso, editor, Nonstandard Methods and Applications in Mathematics, volume 25 of Lecture Notes in Logic, pages 3–44. Association for Symbolic Logic, AK Peters, Wellesley, MA, 2006. |
[12] |
V. Benci and P. Freguglia,
Alcune osservazioni sulla matematica non archimedea, Matem. Cultura e Soc., RUMI, 1 (2016), 105-122.
|
[13] |
V. Benci and L. Luperi Baglini,
Ultrafunctions and applications, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 593-616.
doi: 10.3934/dcdss.2014.7.593. |
[14] |
M. Cococcioni, A. Cudazzo, M. Pappalardo and Y. D. Sergeyev, Solving the Lexicographic Multi-Objective Mixed-Integer Linear Programming Problem using Branch-and-Bound and Grossone Methodology, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105177, 20 pp.
doi: 10.1016/j.cnsns.2020.105177. |
[15] |
M. Cococcioni and L. Fiaschi, The Big-M method with the Numerical Infinite $M$, Optimization Letters, 2020
doi: 10.1007/s11590-020-01644-6. |
[16] |
M. Cococcioni, M. Pappalardo and Y. D. Sergeyev,
Lexicographic Multi-Objective Linear Programming using Grossone Methodology: Theory and Algorithm, Applied Mathematics and Computation, 318 (2018), 298-311.
doi: 10.1016/j.amc.2017.05.058. |
[17] |
G. B. Dantzig and M. N. Thapa, Linear Programming 2: Theory and Extensions, Springer-Verlag, New York, 2003. |
[18] |
L. Fiaschi and M. Cococcioni,
Numerical Asymptotic Results in Game Theory using Sergeyev's Infinity Computing, International Journal of Unconventional Computing, 14 (2018), 1-25.
|
[19] |
L. Fiaschi and M. Cococcioni, Non-Archimedean Game Theory: A Numerical Approach, Applied Mathematics and Computation, 2020, 125356.
doi: 10.1016/j.amc.2020.125356. |
[20] |
P. Fletcher, K. Hrbacek, V. Kanovei, M. G. Katz, C. Lobry and S. Sanders,
Approaches to analysis following Robinson, Nelson and others, Real Analysis Exchange, 42 (2017), 193-251.
doi: 10.14321/realanalexch.42.2.0193. |
[21] |
L. Lai, L. Fiaschi and M. Cococcioni, Solving Mixed Pareto-Lexicographic Multi-Objective Optimization Problems: The Case of Priority Chains, Swarm and Evolutionary Computation, 55 (2020), 100687.
doi: 10.1016/j.swevo.2020.100687. |
[22] |
T. Levi-Civita, Sugli infiniti ed infinitesimi attuali quali elementi analitici, Atti del R. Istituto Veneto di Scienze Lettere ed Arti, Venezia, Series 7, 1892. |
[23] |
E. Nelson, Radically Elementary Probability Theory, Princeton University Press, Princeton, New Jersey, 1987.
doi: 10.1515/9781400882144.![]() ![]() ![]() |
[24] |
K. Ogata, Modern Control Engineering, Prentice Hall, New Jersey, 5 edition, 2010. |
[25] |
Y. D. Sergeyev,
Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems, EMS Surveys in Mathematical Sciences, 4 (2017), 219-320.
doi: 10.4171/EMSS/4-2-3. |

[1] |
Manfred G. Madritsch. Non-normal numbers with respect to Markov partitions. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 663-676. doi: 10.3934/dcds.2014.34.663 |
[2] |
Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048 |
[3] |
Manfred G. Madritsch, Izabela Petrykiewicz. Non-normal numbers in dynamical systems fulfilling the specification property. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4751-4764. doi: 10.3934/dcds.2014.34.4751 |
[4] |
H. Thomas Banks, W. Clayton Thompson, Cristina Peligero, Sandra Giest, Jordi Argilaguet, Andreas Meyerhans. A division-dependent compartmental model for computing cell numbers in CFSE-based lymphocyte proliferation assays. Mathematical Biosciences & Engineering, 2012, 9 (4) : 699-736. doi: 10.3934/mbe.2012.9.699 |
[5] |
Peng Sun. Exponential decay of Lebesgue numbers. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3773-3785. doi: 10.3934/dcds.2012.32.3773 |
[6] |
Danny Calegari, Alden Walker. Ziggurats and rotation numbers. Journal of Modern Dynamics, 2011, 5 (4) : 711-746. doi: 10.3934/jmd.2011.5.711 |
[7] |
Xavier Buff, Nataliya Goncharuk. Complex rotation numbers. Journal of Modern Dynamics, 2015, 9: 169-190. doi: 10.3934/jmd.2015.9.169 |
[8] |
Takao Komatsu, Bijan Kumar Patel, Claudio Pita-Ruiz. Several formulas for Bernoulli numbers and polynomials. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021006 |
[9] |
Dmitry Krachun, Zhi-Wei Sun. On sums of four pentagonal numbers with coefficients. Electronic Research Archive, 2020, 28 (1) : 559-566. doi: 10.3934/era.2020029 |
[10] |
Michael Björklund, Alexander Gorodnik. Central limit theorems in the geometry of numbers. Electronic Research Announcements, 2017, 24: 110-122. doi: 10.3934/era.2017.24.012 |
[11] |
Wen Zhang, Lily Li Liu. Asymptotic normality of associated Lah numbers. Mathematical Foundations of Computing, 2021, 4 (3) : 185-191. doi: 10.3934/mfc.2021011 |
[12] |
Jifeng Chu, Meirong Zhang. Rotation numbers and Lyapunov stability of elliptic periodic solutions. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1071-1094. doi: 10.3934/dcds.2008.21.1071 |
[13] |
Dubi Kelmer. Quadratic irrationals and linking numbers of modular knots. Journal of Modern Dynamics, 2012, 6 (4) : 539-561. doi: 10.3934/jmd.2012.6.539 |
[14] |
Zengjing Chen, Weihuan Huang, Panyu Wu. Extension of the strong law of large numbers for capacities. Mathematical Control and Related Fields, 2019, 9 (1) : 175-190. doi: 10.3934/mcrf.2019010 |
[15] |
Zengjing Chen, Qingyang Liu, Gaofeng Zong. Weak laws of large numbers for sublinear expectation. Mathematical Control and Related Fields, 2018, 8 (3&4) : 637-651. doi: 10.3934/mcrf.2018027 |
[16] |
Fanghua Lin, Dan Liu. On the Betti numbers of level sets of solutions to elliptic equations. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4517-4529. doi: 10.3934/dcds.2016.36.4517 |
[17] |
Anna Belova. Rigorous enclosures of rotation numbers by interval methods. Journal of Computational Dynamics, 2016, 3 (1) : 81-91. doi: 10.3934/jcd.2016004 |
[18] |
Matthias Büger. Torsion numbers, a tool for the examination of symmetric reaction-diffusion systems related to oscillation numbers. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 691-708. doi: 10.3934/dcds.1998.4.691 |
[19] |
Abdelhamid Adouani, Habib Marzougui. Computation of rotation numbers for a class of PL-circle homeomorphisms. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3399-3419. doi: 10.3934/dcds.2012.32.3399 |
[20] |
Yuliya Gorb, Dukjin Nam, Alexei Novikov. Numerical simulations of diffusion in cellular flows at high Péclet numbers. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 75-92. doi: 10.3934/dcdsb.2011.15.75 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]