May  2021, 14(5): 1673-1692. doi: 10.3934/dcdss.2020449

The algorithmic numbers in non-archimedean numerical computing environments

1. 

Department of Mathematics, University of Pisa, 56127 Tuscany, IT

2. 

Department of Information Engineering, University of Pisa, 56126 Tuscany, IT

* Corresponding author: Marco Cococcioni (marco.cococcioni@unipi.it)

Received  February 2020 Revised  June 2020 Published  November 2020

There are many natural phenomena that can best be described by the use of infinitesimal and infinite numbers (see e.g. [1,5,13,23]. However, until now, the Non-standard techniques have been applied to theoretical models. In this paper we investigate the possibility to implement such models in numerical simulations. First we define the field of Euclidean numbers which is a particular field of hyperreal numbers. Then, we introduce a set of families of Euclidean numbers, that we have called altogether algorithmic numbers, some of which are inspired by the IEEE 754 standard for floating point numbers. In particular, we suggest three formats which are relevant from the hardware implementation point of view: the Polynomial Algorithmic Numbers, the Bounded Algorithmic Numbers and the Truncated Algorithmic Numbers. In the second part of the paper, we show a few applications of such numbers.

Citation: Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449
References:
[1]

A. Albeverio, J. E. Fenstad, R. Høegh-Krohn and T. Lindstrøm, Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Dover Publications, Princeton, 2009. Google Scholar

[2]

V. Benci, I Numeri e gli Insiemi Etichettati, Laterza, Bari, Italia, 1995. Conferenze del seminario di matematica dell' Università di Bari, vol. 261, pp. 29. Google Scholar

[3]

V. Benci, An algebraic approach to nonstandard analysis, In G. Buttazzo, A. Marino, and M.K.V. Murthy, editors, Calculus of Variations and Partial Differential Equations: Topics on Geometrical Evolution Problems and Degree Theory, pages 285–326. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999. doi: 10.1007/978-3-642-57186-2_12.  Google Scholar

[4]

V. Benci, An algebraic approach to nonstandard analysis, In G. Buttazzo, editor, Calculus of Variations and Partial differential equations, volume 4 of 5, chapter 8, pages 285–326. Springer, Berlin, 2000.  Google Scholar

[5]

V. Benci, Ultrafunctions and generalized solutions, Adv. Nonlinear Studies, 13 (2013), 461-486.  doi: 10.1515/ans-2013-0212.  Google Scholar

[6]

V. Benci, Alla Scoperta dei Numeri Infinitesimi, Lezioni di Analisi Matematica Esposte in un Campo Non-Archimedeo, Aracne Editrice, Rome, 2018.  Google Scholar

[7]

V. Benci and M. Di Nasso, Numerosities of labelled sets: A new way of counting, Adv. Math., 173 (2003), 50-67.  doi: 10.1016/S0001-8708(02)00012-9.  Google Scholar

[8]

V. Benci and M. Di Nasso, How to Measure the Infinite: Mathematics with Infinite and Infinitesimal Numbers, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019.  Google Scholar

[9]

V. BenciM. Di Nasso and M. Forti, An aristotelian notion of size, Ann. Pure Appl. Logic, 143 (2006), 43-53.  doi: 10.1016/j.apal.2006.01.008.  Google Scholar

[10]

V. Benci and M. Forti, The Euclidean numbers, arXiv: 1702.04163v2, 2018. Google Scholar

[11]

V. Benci, M. Forti and M. Di Nasso, The eightfold path to nonstandard analysis, In D. A. Ross N. J. Cutland, M. Di Nasso, editor, Nonstandard Methods and Applications in Mathematics, volume 25 of Lecture Notes in Logic, pages 3–44. Association for Symbolic Logic, AK Peters, Wellesley, MA, 2006.  Google Scholar

[12]

V. Benci and P. Freguglia, Alcune osservazioni sulla matematica non archimedea, Matem. Cultura e Soc., RUMI, 1 (2016), 105-122.   Google Scholar

[13]

V. Benci and L. Luperi Baglini, Ultrafunctions and applications, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 593-616.  doi: 10.3934/dcdss.2014.7.593.  Google Scholar

[14]

M. Cococcioni, A. Cudazzo, M. Pappalardo and Y. D. Sergeyev, Solving the Lexicographic Multi-Objective Mixed-Integer Linear Programming Problem using Branch-and-Bound and Grossone Methodology, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105177, 20 pp. doi: 10.1016/j.cnsns.2020.105177.  Google Scholar

[15]

M. Cococcioni and L. Fiaschi, The Big-M method with the Numerical Infinite $M$, Optimization Letters, 2020 doi: 10.1007/s11590-020-01644-6.  Google Scholar

[16]

M. CococcioniM. Pappalardo and Y. D. Sergeyev, Lexicographic Multi-Objective Linear Programming using Grossone Methodology: Theory and Algorithm, Applied Mathematics and Computation, 318 (2018), 298-311.  doi: 10.1016/j.amc.2017.05.058.  Google Scholar

[17]

G. B. Dantzig and M. N. Thapa, Linear Programming 2: Theory and Extensions, Springer-Verlag, New York, 2003.  Google Scholar

[18]

L. Fiaschi and M. Cococcioni, Numerical Asymptotic Results in Game Theory using Sergeyev's Infinity Computing, International Journal of Unconventional Computing, 14 (2018), 1-25.   Google Scholar

[19]

L. Fiaschi and M. Cococcioni, Non-Archimedean Game Theory: A Numerical Approach, Applied Mathematics and Computation, 2020, 125356. doi: 10.1016/j.amc.2020.125356.  Google Scholar

[20]

P. FletcherK. HrbacekV. KanoveiM. G. KatzC. Lobry and S. Sanders, Approaches to analysis following Robinson, Nelson and others, Real Analysis Exchange, 42 (2017), 193-251.  doi: 10.14321/realanalexch.42.2.0193.  Google Scholar

[21]

L. Lai, L. Fiaschi and M. Cococcioni, Solving Mixed Pareto-Lexicographic Multi-Objective Optimization Problems: The Case of Priority Chains, Swarm and Evolutionary Computation, 55 (2020), 100687. doi: 10.1016/j.swevo.2020.100687.  Google Scholar

[22]

T. Levi-Civita, Sugli infiniti ed infinitesimi attuali quali elementi analitici, Atti del R. Istituto Veneto di Scienze Lettere ed Arti, Venezia, Series 7, 1892. Google Scholar

[23] E. Nelson, Radically Elementary Probability Theory, Princeton University Press, Princeton, New Jersey, 1987.  doi: 10.1515/9781400882144.  Google Scholar
[24]

K. Ogata, Modern Control Engineering, Prentice Hall, New Jersey, 5 edition, 2010. Google Scholar

[25]

Y. D. Sergeyev, Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems, EMS Surveys in Mathematical Sciences, 4 (2017), 219-320.  doi: 10.4171/EMSS/4-2-3.  Google Scholar

show all references

References:
[1]

A. Albeverio, J. E. Fenstad, R. Høegh-Krohn and T. Lindstrøm, Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Dover Publications, Princeton, 2009. Google Scholar

[2]

V. Benci, I Numeri e gli Insiemi Etichettati, Laterza, Bari, Italia, 1995. Conferenze del seminario di matematica dell' Università di Bari, vol. 261, pp. 29. Google Scholar

[3]

V. Benci, An algebraic approach to nonstandard analysis, In G. Buttazzo, A. Marino, and M.K.V. Murthy, editors, Calculus of Variations and Partial Differential Equations: Topics on Geometrical Evolution Problems and Degree Theory, pages 285–326. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999. doi: 10.1007/978-3-642-57186-2_12.  Google Scholar

[4]

V. Benci, An algebraic approach to nonstandard analysis, In G. Buttazzo, editor, Calculus of Variations and Partial differential equations, volume 4 of 5, chapter 8, pages 285–326. Springer, Berlin, 2000.  Google Scholar

[5]

V. Benci, Ultrafunctions and generalized solutions, Adv. Nonlinear Studies, 13 (2013), 461-486.  doi: 10.1515/ans-2013-0212.  Google Scholar

[6]

V. Benci, Alla Scoperta dei Numeri Infinitesimi, Lezioni di Analisi Matematica Esposte in un Campo Non-Archimedeo, Aracne Editrice, Rome, 2018.  Google Scholar

[7]

V. Benci and M. Di Nasso, Numerosities of labelled sets: A new way of counting, Adv. Math., 173 (2003), 50-67.  doi: 10.1016/S0001-8708(02)00012-9.  Google Scholar

[8]

V. Benci and M. Di Nasso, How to Measure the Infinite: Mathematics with Infinite and Infinitesimal Numbers, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019.  Google Scholar

[9]

V. BenciM. Di Nasso and M. Forti, An aristotelian notion of size, Ann. Pure Appl. Logic, 143 (2006), 43-53.  doi: 10.1016/j.apal.2006.01.008.  Google Scholar

[10]

V. Benci and M. Forti, The Euclidean numbers, arXiv: 1702.04163v2, 2018. Google Scholar

[11]

V. Benci, M. Forti and M. Di Nasso, The eightfold path to nonstandard analysis, In D. A. Ross N. J. Cutland, M. Di Nasso, editor, Nonstandard Methods and Applications in Mathematics, volume 25 of Lecture Notes in Logic, pages 3–44. Association for Symbolic Logic, AK Peters, Wellesley, MA, 2006.  Google Scholar

[12]

V. Benci and P. Freguglia, Alcune osservazioni sulla matematica non archimedea, Matem. Cultura e Soc., RUMI, 1 (2016), 105-122.   Google Scholar

[13]

V. Benci and L. Luperi Baglini, Ultrafunctions and applications, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 593-616.  doi: 10.3934/dcdss.2014.7.593.  Google Scholar

[14]

M. Cococcioni, A. Cudazzo, M. Pappalardo and Y. D. Sergeyev, Solving the Lexicographic Multi-Objective Mixed-Integer Linear Programming Problem using Branch-and-Bound and Grossone Methodology, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105177, 20 pp. doi: 10.1016/j.cnsns.2020.105177.  Google Scholar

[15]

M. Cococcioni and L. Fiaschi, The Big-M method with the Numerical Infinite $M$, Optimization Letters, 2020 doi: 10.1007/s11590-020-01644-6.  Google Scholar

[16]

M. CococcioniM. Pappalardo and Y. D. Sergeyev, Lexicographic Multi-Objective Linear Programming using Grossone Methodology: Theory and Algorithm, Applied Mathematics and Computation, 318 (2018), 298-311.  doi: 10.1016/j.amc.2017.05.058.  Google Scholar

[17]

G. B. Dantzig and M. N. Thapa, Linear Programming 2: Theory and Extensions, Springer-Verlag, New York, 2003.  Google Scholar

[18]

L. Fiaschi and M. Cococcioni, Numerical Asymptotic Results in Game Theory using Sergeyev's Infinity Computing, International Journal of Unconventional Computing, 14 (2018), 1-25.   Google Scholar

[19]

L. Fiaschi and M. Cococcioni, Non-Archimedean Game Theory: A Numerical Approach, Applied Mathematics and Computation, 2020, 125356. doi: 10.1016/j.amc.2020.125356.  Google Scholar

[20]

P. FletcherK. HrbacekV. KanoveiM. G. KatzC. Lobry and S. Sanders, Approaches to analysis following Robinson, Nelson and others, Real Analysis Exchange, 42 (2017), 193-251.  doi: 10.14321/realanalexch.42.2.0193.  Google Scholar

[21]

L. Lai, L. Fiaschi and M. Cococcioni, Solving Mixed Pareto-Lexicographic Multi-Objective Optimization Problems: The Case of Priority Chains, Swarm and Evolutionary Computation, 55 (2020), 100687. doi: 10.1016/j.swevo.2020.100687.  Google Scholar

[22]

T. Levi-Civita, Sugli infiniti ed infinitesimi attuali quali elementi analitici, Atti del R. Istituto Veneto di Scienze Lettere ed Arti, Venezia, Series 7, 1892. Google Scholar

[23] E. Nelson, Radically Elementary Probability Theory, Princeton University Press, Princeton, New Jersey, 1987.  doi: 10.1515/9781400882144.  Google Scholar
[24]

K. Ogata, Modern Control Engineering, Prentice Hall, New Jersey, 5 edition, 2010. Google Scholar

[25]

Y. D. Sergeyev, Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems, EMS Surveys in Mathematical Sciences, 4 (2017), 219-320.  doi: 10.4171/EMSS/4-2-3.  Google Scholar

Figure 1.  Feasible region (the vertical line on the left is positioned at $ x_1 = -\alpha $, while the vertical constraint on the right is at $ x_1 = \alpha $. The upper horizontal constraint at $ x_2 = 1 $ and the lower constraint at $ x_2 = -1. $
[1]

Takao Komatsu, Bijan Kumar Patel, Claudio Pita-Ruiz. Several formulas for Bernoulli numbers and polynomials. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021006

[2]

Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060

[3]

Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046

[4]

Zhenquan Zhang, Meiling Chen, Jiajun Zhang, Tianshou Zhou. Analysis of non-Markovian effects in generalized birth-death models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3717-3735. doi: 10.3934/dcdsb.2020254

[5]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[6]

Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021008

[7]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[8]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[9]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[10]

Gbeminiyi John Oyewole, Olufemi Adetunji. Solving the facility location and fixed charge solid transportation problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1557-1575. doi: 10.3934/jimo.2020034

[11]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[12]

Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063

[13]

Melis Alpaslan Takan, Refail Kasimbeyli. Multiobjective mathematical models and solution approaches for heterogeneous fixed fleet vehicle routing problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2073-2095. doi: 10.3934/jimo.2020059

[14]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[15]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[16]

Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024

[17]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[18]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446

[19]

José A. Carrillo, Bertram Düring, Lisa Maria Kreusser, Carola-Bibiane Schönlieb. Equilibria of an anisotropic nonlocal interaction equation: Analysis and numerics. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3985-4012. doi: 10.3934/dcds.2021025

[20]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (89)
  • HTML views (178)
  • Cited by (0)

Other articles
by authors

[Back to Top]