
-
Previous Article
Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting
- DCDS-S Home
- This Issue
-
Next Article
Existence criteria of ground state solutions for Schrödinger-Poisson systems with a vanishing potential
Causal fermion systems and the ETH approach to quantum theory
1. | Fakultät für Mathematik, Universität Regensburg, D-93040 Regensburg, Germany |
2. | Institute of Theoretical Physics, ETH Zurich, Switzerland |
3. | Fakultät für Mathematik, Universität Regensburg, D-93040 Regensburg, Germany |
4. | Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, D-14476 Potsdam, Germany |
After reviewing the theory of "causal fermion systems" (CFS theory) and the "Events, Trees, and Histories Approach" to quantum theory (ETH approach), we compare some of the mathematical structures underlying these two general frameworks and discuss similarities and differences. For causal fermion systems, we introduce future algebras based on causal relations inherent to a causal fermion system. These algebras are analogous to the algebras previously introduced in the ETH approach. We then show that the spacetime points of a causal fermion system have properties similar to those of "events", as defined in the ETH approach. Our discussion is underpinned by a survey of results on causal fermion systems describing Minkowski space that show that an operator representing a spacetime point commutes with the algebra in its causal future, up to tiny corrections that depend on a regularization length.
References:
[1] |
Link to web platform on causal fermion systems: http://www.causal-fermion-system.com. Google Scholar |
[2] |
L. Bäuml, F. Finster, D. Schiefeneder and H. von der Mosel, Singular support of minimizers of the causal variational principle on the sphere, Calc. Var. Partial Differential Equations, 58 (2019), 205, 27 pp.
doi: 10.1007/s00526-019-1652-7. |
[3] |
P. Blanchard, J. Fröhlich and B. Schubnel,
A garden of forking paths – the quantum mechanics of histories of events, Nuclear Phys. B, 912 (2016), 463-484.
doi: 10.1016/j.nuclphysb.2016.04.010. |
[4] |
D. Buchholz and J. E. Roberts,
New light on infrared problems: Sectors, statistics, symmetries and spectrum, Commun. Math. Phys., 330 (2014), 935-972.
doi: 10.1007/s00220-014-2004-2. |
[5] |
L. J. Bunce and J. D. Maitland Wright,
The Mackey-Gleason problem, Bull. Amer. Math. Soc., 26 (1992), 288-293.
doi: 10.1090/S0273-0979-1992-00274-4. |
[6] |
E. Curiel, F. Finster and J. M. Isidro, Two-dimensional area and matter flux in the theory of causal fermion systems, preprint, arXiv: 1910.06161, to appear in Internat. J. Modern Phys. D, (2020). Google Scholar |
[7] |
C. Dappiaggi and F. Finster,
Linearized fields for causal variational principles: Existence theory and causal structure, Methods Appl. Anal., 27 (2020), 1-56.
doi: 10.4310/MAA.2020.v27.n1.a1. |
[8] |
S. Doplicher, K. Fredenhagen and J. E. Roberts,
The quantum structure of spacetime at the Planck scale and quantum fields, Commun. Math. Phys., 172 (1995), 187-220.
doi: 10.1007/BF02104515. |
[9] |
A. Dvurečenskij, Gleason's Theorem and its Applications, Mathematics and its Applications (East European Series), vol. 60, Kluwer Academic Publishers Group, Dordrecht; Ister Science Press, Bratislava, 1993.
doi: 10.1007/978-94-015-8222-3. |
[10] |
F. Finster, The Principle of the Fermionic Projector, hep-th/0001048, hep-th/0202059, hep-th/0210121, AMS/IP Studies in Advanced Mathematics, vol. 35, American Mathematical Society, Providence, RI, 2006.
doi: 10.1090/amsip/035. |
[11] |
F. Finster, On the regularized fermionic projector of the vacuum, J. Math. Phys., 49 (2008), 032304, 60 pp.
doi: 10.1063/1.2888187. |
[12] |
F. Finster,
Causal variational principles on measure spaces, J. Reine Angew. Math., 646 (2010), 141-194.
doi: 10.1515/CRELLE.2010.069. |
[13] |
F. Finster, Perturbative quantum field theory in the framework of the fermionic projector, J. Math. Phys., 55 (2014), 042301, 53 pp.
doi: 10.1063/1.4871549. |
[14] |
F. Finster, Causal fermion systems – an overview, in Quantum Mathematical Physics: A Bridge between Mathematics and Physics (F. Finster, J. Kleiner, C. R ken, and J. Tolksdorf, eds.), Birkhäuser Verlag, Basel, (2016), 313–380.
doi: 10.1007/978-3-319-42067-7. |
[15] |
F. Finster, The Continuum Limit of Causal Fermion Systems, Fundamental Theories of Physics, vol. 186, Springer, 2016.
doi: 10.1007/978-3-319-42067-7. |
[16] |
F. Finster, Causal fermion systems: Discrete space-times, causation and finite propagation speed, J. Phys.: Conf. Ser., 1275 (2019), 012009. Google Scholar |
[17] |
F. Finster,
Perturbation theory for critical points of causal variational principles, Adv. Theor. Math. Phys., 24 (2020), 563-619.
doi: 10.4310/ATMP.2020.v24.n3.a2. |
[18] |
F. Finster and A. Grotz,
A Lorentzian quantum geometry, Adv. Theor. Math. Phys., 16 (2012), 1197-1290.
doi: 10.4310/ATMP.2012.v16.n4.a3. |
[19] |
F. Finster and A. Grotz,
On the initial value problem for causal variational principles, J. Reine Angew. Math., 725 (2017), 115-141.
doi: 10.1515/crelle-2014-0080. |
[20] |
F. Finster, A. Grotz and D. Schiefeneder, Causal fermion systems: A quantum space-time emerging from an action principle, in Quantum Field Theory and Gravity (F. Finster, O. Müller, M. Nardmann, J. Tolksdorf, and E. Zeidler, eds.), Birkhäuser Verlag, Basel, (2012), 157–182.
doi: 10.1007/978-3-0348-0043-3_9. |
[21] |
F. Finster and M. Jokel, Causal fermion systems: An elementary introduction to physical ideas and mathematical concepts, in Progress and Visions in Quantum Theory in View of Gravity (F. Finster, D. Giulini, J. Kleiner, and J. Tolksdorf, eds.), Birkhäuser Verlag, Basel, (2020), 63–92.
doi: 10.1007/978-3-030-38941-3_2. |
[22] |
F. Finster and N. Kamran, Complex structures on jet spaces and bosonic Fock space dynamics for causal variational principles, preprint, arXiv: 1808.03177, to appear in Pure Appl. Math. Q., (2020). Google Scholar |
[23] |
F. Finster and J. Kleiner, Causal fermion systems as a candidate for a unified physical theory, J. Phys.: Conf. Ser., 626 (2015), 012020. Google Scholar |
[24] |
F. Finster and J. Kleiner, A Hamiltonian formulation of causal variational principles, Calc. Var. Partial Differential Equations, 56 (2017), no. 73, 33pp.
doi: 10.1007/s00526-017-1153-5. |
[25] |
F. Finster and C. Langer, Causal variational principles in the $\sigma$-locally compact setting: Existence of minimizers, preprint, arXiv: 2002.04412, to appear in Adv. Calc. Var., (2020). Google Scholar |
[26] |
F. Finster and M. Oppio, Local algebras for causal fermion systems in Minkowski space, preprint, arXiv: 2004.00419, (2020). Google Scholar |
[27] |
F. Finster and D. Schiefeneder,
On the support of minimizers of causal variational principles, Arch. Ration. Mech. Anal., 210 (2013), 321-364.
doi: 10.1007/s00205-013-0649-1. |
[28] |
J. Fröhlich, The quest for laws and structure, Mathematics and Society, (2016), 101–129. Google Scholar |
[29] |
J. Fröhlich, A brief review of the "ETH-approach to quantum mechanics", preprint, arXiv: 1905.06603, (2019). Google Scholar |
[30] |
J. Fröhlich, Relativistic quantum theory, preprint, arXiv: 1912.00726, (2019). Google Scholar |
[31] |
J. Fröhlich, "Diminishing potentialities", entanglement, "purification" and the emergence of events in quantum mechanics – a simple model, Sect. 5.6 of Notes for a course on Quantum Theory at LMU-Munich (Nov./Dec. 2019). Google Scholar |
[32] |
J. Fröhlich and B. Schubnel, Quantum probability theory and the foundations of quantum mechanics, in The Message of Quantum Science, Springer, 899 (2015), 131–193.
doi: 10.1007/978-3-662-46422-9_7. |
[33] |
A. M. Gleason,
Measures on the closed subspaces of a Hilbert space, J. Math. Mech., 6 (1957), 885-893.
doi: 10.1512/iumj.1957.6.56050. |
[34] |
G. C. Hegerfeldt, Remark on causality and particle localization, Physical Review D, 10 (1974), no. 10, 3320.
doi: 10.1103/PhysRevD.10.3320. |
[35] |
J. Kleiner, Dynamics of Causal Fermion Systems – Field Equations and Correction Terms for a New Unified Physical Theory, Dissertation, Universität Regensburg, 2017. Google Scholar |
[36] |
H. Lin, Almost commuting selfadjoint matrices and applications, in Operator Algebras and their Applications (Waterloo, ON, 1994/1995), Fields Inst. Commun., vol. 13, Amer. Math. Soc., Providence, RI, (1997), 193–233. |
[37] |
B. Thaller, The Dirac Equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992.
doi: 10.1007/978-3-662-02753-0. |
show all references
References:
[1] |
Link to web platform on causal fermion systems: http://www.causal-fermion-system.com. Google Scholar |
[2] |
L. Bäuml, F. Finster, D. Schiefeneder and H. von der Mosel, Singular support of minimizers of the causal variational principle on the sphere, Calc. Var. Partial Differential Equations, 58 (2019), 205, 27 pp.
doi: 10.1007/s00526-019-1652-7. |
[3] |
P. Blanchard, J. Fröhlich and B. Schubnel,
A garden of forking paths – the quantum mechanics of histories of events, Nuclear Phys. B, 912 (2016), 463-484.
doi: 10.1016/j.nuclphysb.2016.04.010. |
[4] |
D. Buchholz and J. E. Roberts,
New light on infrared problems: Sectors, statistics, symmetries and spectrum, Commun. Math. Phys., 330 (2014), 935-972.
doi: 10.1007/s00220-014-2004-2. |
[5] |
L. J. Bunce and J. D. Maitland Wright,
The Mackey-Gleason problem, Bull. Amer. Math. Soc., 26 (1992), 288-293.
doi: 10.1090/S0273-0979-1992-00274-4. |
[6] |
E. Curiel, F. Finster and J. M. Isidro, Two-dimensional area and matter flux in the theory of causal fermion systems, preprint, arXiv: 1910.06161, to appear in Internat. J. Modern Phys. D, (2020). Google Scholar |
[7] |
C. Dappiaggi and F. Finster,
Linearized fields for causal variational principles: Existence theory and causal structure, Methods Appl. Anal., 27 (2020), 1-56.
doi: 10.4310/MAA.2020.v27.n1.a1. |
[8] |
S. Doplicher, K. Fredenhagen and J. E. Roberts,
The quantum structure of spacetime at the Planck scale and quantum fields, Commun. Math. Phys., 172 (1995), 187-220.
doi: 10.1007/BF02104515. |
[9] |
A. Dvurečenskij, Gleason's Theorem and its Applications, Mathematics and its Applications (East European Series), vol. 60, Kluwer Academic Publishers Group, Dordrecht; Ister Science Press, Bratislava, 1993.
doi: 10.1007/978-94-015-8222-3. |
[10] |
F. Finster, The Principle of the Fermionic Projector, hep-th/0001048, hep-th/0202059, hep-th/0210121, AMS/IP Studies in Advanced Mathematics, vol. 35, American Mathematical Society, Providence, RI, 2006.
doi: 10.1090/amsip/035. |
[11] |
F. Finster, On the regularized fermionic projector of the vacuum, J. Math. Phys., 49 (2008), 032304, 60 pp.
doi: 10.1063/1.2888187. |
[12] |
F. Finster,
Causal variational principles on measure spaces, J. Reine Angew. Math., 646 (2010), 141-194.
doi: 10.1515/CRELLE.2010.069. |
[13] |
F. Finster, Perturbative quantum field theory in the framework of the fermionic projector, J. Math. Phys., 55 (2014), 042301, 53 pp.
doi: 10.1063/1.4871549. |
[14] |
F. Finster, Causal fermion systems – an overview, in Quantum Mathematical Physics: A Bridge between Mathematics and Physics (F. Finster, J. Kleiner, C. R ken, and J. Tolksdorf, eds.), Birkhäuser Verlag, Basel, (2016), 313–380.
doi: 10.1007/978-3-319-42067-7. |
[15] |
F. Finster, The Continuum Limit of Causal Fermion Systems, Fundamental Theories of Physics, vol. 186, Springer, 2016.
doi: 10.1007/978-3-319-42067-7. |
[16] |
F. Finster, Causal fermion systems: Discrete space-times, causation and finite propagation speed, J. Phys.: Conf. Ser., 1275 (2019), 012009. Google Scholar |
[17] |
F. Finster,
Perturbation theory for critical points of causal variational principles, Adv. Theor. Math. Phys., 24 (2020), 563-619.
doi: 10.4310/ATMP.2020.v24.n3.a2. |
[18] |
F. Finster and A. Grotz,
A Lorentzian quantum geometry, Adv. Theor. Math. Phys., 16 (2012), 1197-1290.
doi: 10.4310/ATMP.2012.v16.n4.a3. |
[19] |
F. Finster and A. Grotz,
On the initial value problem for causal variational principles, J. Reine Angew. Math., 725 (2017), 115-141.
doi: 10.1515/crelle-2014-0080. |
[20] |
F. Finster, A. Grotz and D. Schiefeneder, Causal fermion systems: A quantum space-time emerging from an action principle, in Quantum Field Theory and Gravity (F. Finster, O. Müller, M. Nardmann, J. Tolksdorf, and E. Zeidler, eds.), Birkhäuser Verlag, Basel, (2012), 157–182.
doi: 10.1007/978-3-0348-0043-3_9. |
[21] |
F. Finster and M. Jokel, Causal fermion systems: An elementary introduction to physical ideas and mathematical concepts, in Progress and Visions in Quantum Theory in View of Gravity (F. Finster, D. Giulini, J. Kleiner, and J. Tolksdorf, eds.), Birkhäuser Verlag, Basel, (2020), 63–92.
doi: 10.1007/978-3-030-38941-3_2. |
[22] |
F. Finster and N. Kamran, Complex structures on jet spaces and bosonic Fock space dynamics for causal variational principles, preprint, arXiv: 1808.03177, to appear in Pure Appl. Math. Q., (2020). Google Scholar |
[23] |
F. Finster and J. Kleiner, Causal fermion systems as a candidate for a unified physical theory, J. Phys.: Conf. Ser., 626 (2015), 012020. Google Scholar |
[24] |
F. Finster and J. Kleiner, A Hamiltonian formulation of causal variational principles, Calc. Var. Partial Differential Equations, 56 (2017), no. 73, 33pp.
doi: 10.1007/s00526-017-1153-5. |
[25] |
F. Finster and C. Langer, Causal variational principles in the $\sigma$-locally compact setting: Existence of minimizers, preprint, arXiv: 2002.04412, to appear in Adv. Calc. Var., (2020). Google Scholar |
[26] |
F. Finster and M. Oppio, Local algebras for causal fermion systems in Minkowski space, preprint, arXiv: 2004.00419, (2020). Google Scholar |
[27] |
F. Finster and D. Schiefeneder,
On the support of minimizers of causal variational principles, Arch. Ration. Mech. Anal., 210 (2013), 321-364.
doi: 10.1007/s00205-013-0649-1. |
[28] |
J. Fröhlich, The quest for laws and structure, Mathematics and Society, (2016), 101–129. Google Scholar |
[29] |
J. Fröhlich, A brief review of the "ETH-approach to quantum mechanics", preprint, arXiv: 1905.06603, (2019). Google Scholar |
[30] |
J. Fröhlich, Relativistic quantum theory, preprint, arXiv: 1912.00726, (2019). Google Scholar |
[31] |
J. Fröhlich, "Diminishing potentialities", entanglement, "purification" and the emergence of events in quantum mechanics – a simple model, Sect. 5.6 of Notes for a course on Quantum Theory at LMU-Munich (Nov./Dec. 2019). Google Scholar |
[32] |
J. Fröhlich and B. Schubnel, Quantum probability theory and the foundations of quantum mechanics, in The Message of Quantum Science, Springer, 899 (2015), 131–193.
doi: 10.1007/978-3-662-46422-9_7. |
[33] |
A. M. Gleason,
Measures on the closed subspaces of a Hilbert space, J. Math. Mech., 6 (1957), 885-893.
doi: 10.1512/iumj.1957.6.56050. |
[34] |
G. C. Hegerfeldt, Remark on causality and particle localization, Physical Review D, 10 (1974), no. 10, 3320.
doi: 10.1103/PhysRevD.10.3320. |
[35] |
J. Kleiner, Dynamics of Causal Fermion Systems – Field Equations and Correction Terms for a New Unified Physical Theory, Dissertation, Universität Regensburg, 2017. Google Scholar |
[36] |
H. Lin, Almost commuting selfadjoint matrices and applications, in Operator Algebras and their Applications (Waterloo, ON, 1994/1995), Fields Inst. Commun., vol. 13, Amer. Math. Soc., Providence, RI, (1997), 193–233. |
[37] |
B. Thaller, The Dirac Equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992.
doi: 10.1007/978-3-662-02753-0. |


[1] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020376 |
[2] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[3] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[4] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[5] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[6] |
Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295 |
[7] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[8] |
Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150 |
[9] |
Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020458 |
[10] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[11] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
[12] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[13] |
Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046 |
[14] |
Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018 |
[15] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[16] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[17] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020391 |
[18] |
Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122 |
[19] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020055 |
[20] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021012 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]