We prove the existence of positive solutions for a class of semipositone problems with singular Trudinger-Moser nonlinearities. The proof is based on compactness and regularity arguments.
Citation: |
[1] |
Ad imurthi and K. Sandeep, A singular Moser-Trudinger embedding and its applications, NoDEA Nonlinear Differential Equations Appl., 13 (2007), 585-603.
doi: 10.1007/s00030-006-4025-9.![]() ![]() ![]() |
[2] |
I. Ali, A. Castro and R. Shivaji, Uniqueness and stability of nonnegative solutions for semipositone problems in a ball, Proc. Amer. Math. Soc., 117 (1993), 775-782.
doi: 10.1090/S0002-9939-1993-1116249-5.![]() ![]() ![]() |
[3] |
A. Ambrosetti, D. Arcoya and B. Buffoni, Positive solutions for some semi-positone problems via bifurcation theory, Differential Integral Equations, 7 (1994), 655-663.
![]() ![]() |
[4] |
A. Castro, D. G. de Figueredo and E. Lopera, Existence of positive solutions for a semipositone $p$-Laplacian problem, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 475-482.
doi: 10.1017/S0308210515000657.![]() ![]() ![]() |
[5] |
A. Castro and R. Shivaji, Nonnegative solutions for a class of nonpositone problems, Proc. Roy. Soc. Edinburgh Sect. A, 108 (1988), 291-302.
doi: 10.1017/S0308210500014670.![]() ![]() ![]() |
[6] |
M. Chhetri, P. Drábek and R. Shivaji, Existence of positive solutions for a class of $p$-Laplacian superlinear semipositone problems, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 925-936.
doi: 10.1017/S0308210515000220.![]() ![]() ![]() |
[7] |
D. G. Costa, H. Ramos Quoirin and H. Tehrani, A variational approach to superlinear semipositone elliptic problems, Proc. Amer. Math. Soc., 145 (2017), 2661-2675.
doi: 10.1090/proc/13426.![]() ![]() ![]() |