May  2021, 14(5): 1779-1799. doi: 10.3934/dcdss.2020454

Sign-changing solutions for a parameter-dependent quasilinear equation

1. 

LMAM, School of Mathematical Science, Peking University, Beijing 100871, China

2. 

Department of Mathematics, Yunnan Normal University, Kunming 650500, China

3. 

Department of Mathematics and Statistics, Utah State University, Logan, UT 84322, USA

* Corresponding author: Xiangqing Liu, Zhi-Qiang Wang

Received  February 2020 Revised  July 2020 Published  May 2021 Early access  November 2020

We consider quasilinear elliptic equations, including the following Modified Nonlinear Schrödinger Equation as a special example:
$ \begin{equation*} \left\{ \begin{aligned} &\Delta u+\frac{1}{2}u\Delta u^2+\lambda |u|^{r-2}u = 0, \ \ \ \text{in}\,\,\Omega,\\ &u = 0\quad\text{on}\,\,\partial\Omega, \end{aligned} \right. \end{equation*} $
where
$ \Omega\subset\mathbb{R}^N(N\geq3) $
is a bounded domain with smooth boundary,
$ \lambda>0,\, r\in(2,4) $
. We prove as
$ \lambda $
becomes large the existence of more and more sign-changing solutions of both positive and negative energies.
Citation: Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454
References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

T. BartschK.-C. Chang and Z.-Q. Wang, On the Morse indices of sign changing solutions of nonlinear elliptic problems, Math. Z., 233 (2000), 655-677.  doi: 10.1007/s002090050492.  Google Scholar

[3]

T. BartschZ. Liu and T. Weth, Sign changing solutions of superlinear Schrödinger equations, Commun. Partial Differential Equations, 29 (2004), 25-42.  doi: 10.1081/PDE-120028842.  Google Scholar

[4]

T. Bartsch and Z.-Q. Wang, On the existence of sign changing solutions for semilinear Dirichlet problems, Topol. Methods Nonlinear Anal., 7 (1996), 115-131.  doi: 10.12775/TMNA.1996.005.  Google Scholar

[5]

F. G. Bass and N. N. Nasonov, Nonlinear electromagnetic-spin waves, Phys. Rep., 189 (1990), 165-223.  doi: 10.1016/0370-1573(90)90093-H.  Google Scholar

[6]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.  Google Scholar

[7]

D. C. Clark, A variant of the Lusternik-Schnirelman theory, Indiana Univ. Math. J., 22 (1972/1973), 65-74.  doi: 10.1512/iumj.1973.22.22008.  Google Scholar

[8]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[9]

R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys. B, 37 (1980), 83-87.  doi: 10.1007/BF01325508.  Google Scholar

[10]

Y. Jing, Z. Liu and Z.-Q. Wang, Multiple solutions of a parameter-dependent quasilinear elliptic equation, Calc. Var. Partial Differential Equations, 55 (2016), 150, 26 pp. doi: 10.1007/s00526-016-1067-7.  Google Scholar

[11]

Y. JingZ. Liu and Z.-Q. Wang, Existence results for a singular quasilinear elliptic equation, J. Fixed Point Theory Appl., 19 (2017), 67-84.  doi: 10.1007/s11784-016-0341-9.  Google Scholar

[12]

Y. Jing, Z. Liu and Z.-Q. Wang, Parameter-dependent multiplicity results of sign-changing solutions for quasilinear elliptic equations, preprint. Google Scholar

[13]

M. KosevichA. Ivanov and S. Kovalev, Magnetic solutions, Phys. Rep., 194 (1990), 117-238.   Google Scholar

[14]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Jap., 50 (1981), 3801-3805.  doi: 10.1143/JPSJ.50.3801.  Google Scholar

[15] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968.   Google Scholar
[16]

S. Li and Z.-Q. Wang, Ljusternik-Schnirelman theory in partially ordered Hilbert spaces, Trans. Amer. Math. Soc., 354 (2002), 3207-3227.  doi: 10.1090/S0002-9947-02-03031-3.  Google Scholar

[17]

G. M. Lieberman, The natural generalizationj of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Commun. Partial Differential Equations, 16 (1991), 311-361.  doi: 10.1080/03605309108820761.  Google Scholar

[18]

A. G. Litvak and A. M. Sergeev, One dimensional collapse of plasma waves, JEPT Letters, 27 (1978), 517-520.   Google Scholar

[19]

J.-Q. LiuX.-Q. Liu and Z.-Q. Wang, Multiple sign-changing solutions for quasilinear elliptic equations via perturbation method, Commun. Partial Differential Equations, 39 (2014), 2216-2239.  doi: 10.1080/03605302.2014.942738.  Google Scholar

[20]

J. LiuX. Liu and Z.-Q. Wang, Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth, J. Differential Equations, 261 (2016), 7194-7236.  doi: 10.1016/j.jde.2016.09.018.  Google Scholar

[21]

J. LiuX. Liu and Z.-Q. Wang, Multiple mixed states of nodal solutions for nonlinear Schrödinger systems, Calc. Var. Partial Differential Equations, 52 (2015), 565-586.  doi: 10.1007/s00526-014-0724-y.  Google Scholar

[22]

X.-Q. LiuJ.-Q. Liu and Z.-Q. Wang, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 141 (2013), 253-263.  doi: 10.1090/S0002-9939-2012-11293-6.  Google Scholar

[23]

X.-Q. LiuJ.-Q. Liu and Z.-Q. Wang, Quasilinear elliptic equations with critical growth via perturbation method, J. Differential Equations, 254 (2013), 102-124.  doi: 10.1016/j.jde.2012.09.006.  Google Scholar

[24]

X. LiuJ. Liu and Z.-Q. Wang, Localized nodal solutions for quasilinear Schrödinger equations, J. Differential Equations, 267 (2019), 7411-7461.  doi: 10.1016/j.jde.2019.08.003.  Google Scholar

[25]

Z. Liu and J. Sun, Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, J. Differential Equations, 172 (2001), 257-299.  doi: 10.1006/jdeq.2000.3867.  Google Scholar

[26]

J. Liu and Z.-Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Proc. Amer. Math. Soc., 131 (2003), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[27]

J.-Q. LiuY.-Q. Wang and Z.-Q. Wang, Soliton solutions for quasilinear Schrödinger equation, II, J. Differential Equations, 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[28]

J.-Q. LiuY.-Q. Wang and Z.-Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Commun. Partial Differential Equations, 29 (2004), 879-901.  doi: 10.1081/PDE-120037335.  Google Scholar

[29]

X. Liu and J. Zhao, $p$-Laplacian equation in $\mathbb{R}^N$ with finite potential via the truncation method, Adv. Nonlinear Stud., 17 (2017), 595-610.  doi: 10.1515/ans-2015-5059.  Google Scholar

[30]

V. G. Makhan'kov and V. K. Fedyanin, Nonlinear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep., 104 (1984), 1-86.  doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[31]

M. Porkolab and M. V. Goldman, Upper hybrid solitons and oscillating two-stream instabilities, Phys. Fluids, 19 (1976), 872-881.  doi: 10.1063/1.861553.  Google Scholar

[32]

G. R. W. Quispel and H. W. Capel, Equation of motion for the Heisenberg spin chain, Phys. A, 110 (1982), 41-80.  doi: 10.1016/0378-4371(82)90104-2.  Google Scholar

[33]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference, Series in Mathematics, American Mathematical Society, Vol. 65, 1986. doi: 10.1090/cbms/065.  Google Scholar

[34]

J. ZhaoX. Liu and J. Liu, $p$-Laplacian equations in $\mathbb{R}^N$ with finite potential via truncation method, the critical case, J. Math. Anal. Appl., 455 (2017), 58-88.  doi: 10.1016/j.jmaa.2017.03.085.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

T. BartschK.-C. Chang and Z.-Q. Wang, On the Morse indices of sign changing solutions of nonlinear elliptic problems, Math. Z., 233 (2000), 655-677.  doi: 10.1007/s002090050492.  Google Scholar

[3]

T. BartschZ. Liu and T. Weth, Sign changing solutions of superlinear Schrödinger equations, Commun. Partial Differential Equations, 29 (2004), 25-42.  doi: 10.1081/PDE-120028842.  Google Scholar

[4]

T. Bartsch and Z.-Q. Wang, On the existence of sign changing solutions for semilinear Dirichlet problems, Topol. Methods Nonlinear Anal., 7 (1996), 115-131.  doi: 10.12775/TMNA.1996.005.  Google Scholar

[5]

F. G. Bass and N. N. Nasonov, Nonlinear electromagnetic-spin waves, Phys. Rep., 189 (1990), 165-223.  doi: 10.1016/0370-1573(90)90093-H.  Google Scholar

[6]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.  Google Scholar

[7]

D. C. Clark, A variant of the Lusternik-Schnirelman theory, Indiana Univ. Math. J., 22 (1972/1973), 65-74.  doi: 10.1512/iumj.1973.22.22008.  Google Scholar

[8]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[9]

R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys. B, 37 (1980), 83-87.  doi: 10.1007/BF01325508.  Google Scholar

[10]

Y. Jing, Z. Liu and Z.-Q. Wang, Multiple solutions of a parameter-dependent quasilinear elliptic equation, Calc. Var. Partial Differential Equations, 55 (2016), 150, 26 pp. doi: 10.1007/s00526-016-1067-7.  Google Scholar

[11]

Y. JingZ. Liu and Z.-Q. Wang, Existence results for a singular quasilinear elliptic equation, J. Fixed Point Theory Appl., 19 (2017), 67-84.  doi: 10.1007/s11784-016-0341-9.  Google Scholar

[12]

Y. Jing, Z. Liu and Z.-Q. Wang, Parameter-dependent multiplicity results of sign-changing solutions for quasilinear elliptic equations, preprint. Google Scholar

[13]

M. KosevichA. Ivanov and S. Kovalev, Magnetic solutions, Phys. Rep., 194 (1990), 117-238.   Google Scholar

[14]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Jap., 50 (1981), 3801-3805.  doi: 10.1143/JPSJ.50.3801.  Google Scholar

[15] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968.   Google Scholar
[16]

S. Li and Z.-Q. Wang, Ljusternik-Schnirelman theory in partially ordered Hilbert spaces, Trans. Amer. Math. Soc., 354 (2002), 3207-3227.  doi: 10.1090/S0002-9947-02-03031-3.  Google Scholar

[17]

G. M. Lieberman, The natural generalizationj of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Commun. Partial Differential Equations, 16 (1991), 311-361.  doi: 10.1080/03605309108820761.  Google Scholar

[18]

A. G. Litvak and A. M. Sergeev, One dimensional collapse of plasma waves, JEPT Letters, 27 (1978), 517-520.   Google Scholar

[19]

J.-Q. LiuX.-Q. Liu and Z.-Q. Wang, Multiple sign-changing solutions for quasilinear elliptic equations via perturbation method, Commun. Partial Differential Equations, 39 (2014), 2216-2239.  doi: 10.1080/03605302.2014.942738.  Google Scholar

[20]

J. LiuX. Liu and Z.-Q. Wang, Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth, J. Differential Equations, 261 (2016), 7194-7236.  doi: 10.1016/j.jde.2016.09.018.  Google Scholar

[21]

J. LiuX. Liu and Z.-Q. Wang, Multiple mixed states of nodal solutions for nonlinear Schrödinger systems, Calc. Var. Partial Differential Equations, 52 (2015), 565-586.  doi: 10.1007/s00526-014-0724-y.  Google Scholar

[22]

X.-Q. LiuJ.-Q. Liu and Z.-Q. Wang, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 141 (2013), 253-263.  doi: 10.1090/S0002-9939-2012-11293-6.  Google Scholar

[23]

X.-Q. LiuJ.-Q. Liu and Z.-Q. Wang, Quasilinear elliptic equations with critical growth via perturbation method, J. Differential Equations, 254 (2013), 102-124.  doi: 10.1016/j.jde.2012.09.006.  Google Scholar

[24]

X. LiuJ. Liu and Z.-Q. Wang, Localized nodal solutions for quasilinear Schrödinger equations, J. Differential Equations, 267 (2019), 7411-7461.  doi: 10.1016/j.jde.2019.08.003.  Google Scholar

[25]

Z. Liu and J. Sun, Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, J. Differential Equations, 172 (2001), 257-299.  doi: 10.1006/jdeq.2000.3867.  Google Scholar

[26]

J. Liu and Z.-Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Proc. Amer. Math. Soc., 131 (2003), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[27]

J.-Q. LiuY.-Q. Wang and Z.-Q. Wang, Soliton solutions for quasilinear Schrödinger equation, II, J. Differential Equations, 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[28]

J.-Q. LiuY.-Q. Wang and Z.-Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Commun. Partial Differential Equations, 29 (2004), 879-901.  doi: 10.1081/PDE-120037335.  Google Scholar

[29]

X. Liu and J. Zhao, $p$-Laplacian equation in $\mathbb{R}^N$ with finite potential via the truncation method, Adv. Nonlinear Stud., 17 (2017), 595-610.  doi: 10.1515/ans-2015-5059.  Google Scholar

[30]

V. G. Makhan'kov and V. K. Fedyanin, Nonlinear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep., 104 (1984), 1-86.  doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[31]

M. Porkolab and M. V. Goldman, Upper hybrid solitons and oscillating two-stream instabilities, Phys. Fluids, 19 (1976), 872-881.  doi: 10.1063/1.861553.  Google Scholar

[32]

G. R. W. Quispel and H. W. Capel, Equation of motion for the Heisenberg spin chain, Phys. A, 110 (1982), 41-80.  doi: 10.1016/0378-4371(82)90104-2.  Google Scholar

[33]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference, Series in Mathematics, American Mathematical Society, Vol. 65, 1986. doi: 10.1090/cbms/065.  Google Scholar

[34]

J. ZhaoX. Liu and J. Liu, $p$-Laplacian equations in $\mathbb{R}^N$ with finite potential via truncation method, the critical case, J. Math. Anal. Appl., 455 (2017), 58-88.  doi: 10.1016/j.jmaa.2017.03.085.  Google Scholar

[1]

Guirong Liu, Yuanwei Qi. Sign-changing solutions of a quasilinear heat equation with a source term. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1389-1414. doi: 10.3934/dcdsb.2013.18.1389

[2]

Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565

[3]

Salomón Alarcón, Jinggang Tan. Sign-changing solutions for some nonhomogeneous nonlocal critical elliptic problems. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5825-5846. doi: 10.3934/dcds.2019256

[4]

Yohei Sato, Zhi-Qiang Wang. On the least energy sign-changing solutions for a nonlinear elliptic system. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 2151-2164. doi: 10.3934/dcds.2015.35.2151

[5]

Aixia Qian, Shujie Li. Multiple sign-changing solutions of an elliptic eigenvalue problem. Discrete & Continuous Dynamical Systems, 2005, 12 (4) : 737-746. doi: 10.3934/dcds.2005.12.737

[6]

Hongxia Shi, Haibo Chen. Infinitely many solutions for generalized quasilinear Schrödinger equations with sign-changing potential. Communications on Pure & Applied Analysis, 2018, 17 (1) : 53-66. doi: 10.3934/cpaa.2018004

[7]

Gabriele Cora, Alessandro Iacopetti. Sign-changing bubble-tower solutions to fractional semilinear elliptic problems. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 6149-6173. doi: 10.3934/dcds.2019268

[8]

Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439

[9]

Yuanxiao Li, Ming Mei, Kaijun Zhang. Existence of multiple nontrivial solutions for a $p$-Kirchhoff type elliptic problem involving sign-changing weight functions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 883-908. doi: 10.3934/dcdsb.2016.21.883

[10]

Wen Zhang, Xianhua Tang, Bitao Cheng, Jian Zhang. Sign-changing solutions for fourth order elliptic equations with Kirchhoff-type. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2161-2177. doi: 10.3934/cpaa.2016032

[11]

Huxiao Luo, Xianhua Tang, Zu Gao. Sign-changing solutions for non-local elliptic equations with asymptotically linear term. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1147-1159. doi: 10.3934/cpaa.2018055

[12]

Weiwei Ao, Chao Liu. Asymptotic behavior of sign-changing radial solutions of a semilinear elliptic equation in $ \mathbb{R}^2 $ when exponent approaches $ +\infty $. Discrete & Continuous Dynamical Systems, 2020, 40 (8) : 5047-5077. doi: 10.3934/dcds.2020211

[13]

Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235

[14]

A. El Hamidi. Multiple solutions with changing sign energy to a nonlinear elliptic equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 253-265. doi: 10.3934/cpaa.2004.3.253

[15]

Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499

[16]

M. Ben Ayed, Kamal Ould Bouh. Nonexistence results of sign-changing solutions to a supercritical nonlinear problem. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1057-1075. doi: 10.3934/cpaa.2008.7.1057

[17]

Hui Guo, Tao Wang. A note on sign-changing solutions for the Schrödinger Poisson system. Electronic Research Archive, 2020, 28 (1) : 195-203. doi: 10.3934/era.2020013

[18]

Tsung-Fang Wu. On semilinear elliptic equations involving critical Sobolev exponents and sign-changing weight function. Communications on Pure & Applied Analysis, 2008, 7 (2) : 383-405. doi: 10.3934/cpaa.2008.7.383

[19]

Angela Pistoia, Tonia Ricciardi. Sign-changing tower of bubbles for a sinh-Poisson equation with asymmetric exponents. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5651-5692. doi: 10.3934/dcds.2017245

[20]

J. Húska, Peter Poláčik, M.V. Safonov. Principal eigenvalues, spectral gaps and exponential separation between positive and sign-changing solutions of parabolic equations. Conference Publications, 2005, 2005 (Special) : 427-435. doi: 10.3934/proc.2005.2005.427

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (164)
  • HTML views (190)
  • Cited by (0)

Other articles
by authors

[Back to Top]