doi: 10.3934/dcdss.2020457

Analysis of a model for tumor growth and lactate exchanges in a glioma

1. 

La Rochelle Université, LaSIE UMR CNRS 7356, Avenue Michel Crépeau, F-17042 La Rochelle Cedex, France

2. 

Università di Modena e Reggio Emilia, Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Via Campi 213/B, I-41125 Modena, Italy

3. 

Laboratoire I3M et Laboratoire de Mathématiques et Applications, Université de Poitiers, UMR CNRS 7348

4. 

Equipe DACTIM-MIS, Site du Futuroscope - Téléport 2, 11 Boulevard Marie et Pierre Curie - Bâtiment H3 - TSA 61125, 86073 Poitiers Cedex 9, France

5. 

CHU de Poitiers, 2 rue de la Milétrie, 86000 Poitiers, France

* Corresponding author: Laurence Cherfils

Received  March 2020 Published  November 2020

Our aim in this paper is to study a mathematical model for tumor growth and lactate exchanges in a glioma. We prove the existence of nonnegative (i.e. biologically relevant) solutions and, under proper assumptions, the uniqueness of the solution. We also state the permanence of the tumor when necrosis is not taken into account in the model and obtain linear stability results. We end the paper with numerical simulations.

Citation: Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020457
References:
[1]

A. AubertR. CostalatP. J. Magistretti and L. Pellerin, Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation, Proc. National Acad. Sci. USA, 102 (2005), 16448-16453.  doi: 10.1073/pnas.0505427102.  Google Scholar

[2]

M. Conti, S. Gatti and A. Miranville, Mathematical analysis of a model for proliterative-to-invasive transition of hypoxic glioma cells,, Nonlinear Analysis, 189 (2019), Article 111572, 17 pages. doi: 10.1016/j.na.2019.111572.  Google Scholar

[3]

R. GuillevinA. Miranville and A. Perrillat-Mercerot, On a reaction-diffusion system associated with brain lactate kinetics, Electronic J. Diff. Eqn., 23 (2017), 1-16.   Google Scholar

[4]

C. GuillevinR. GuillevinA. Miranville and A. Perrillat-Mercerot, Analysis of a Mathematical model for brain lactate kinetics, Mathematical Biosciences and Engineering, 15 (2018), 1225-1242.  doi: 10.3934/mbe.2018056.  Google Scholar

[5]

J. B. McGillenC. J. KellyA. Martínez-GonzálezN. K. MartinE. A. GaffneyP. K. Maini and V. M. Pérez-García, Glucose-lactate metabolic cooperation in cancer: Insights from a spatial mathematical model and implications for targeted therapy, J. Theoret. Biol., 361 (2014), 190-203.  doi: 10.1016/j.jtbi.2014.09.018.  Google Scholar

[6]

B. Mendoza-JuezA. Martínez-GonzálezG. F. Calvo and V. M. Peréz-García, A mathematical model for the glucose-lactate metabolism of in vitro cancer cells, Bull. Math. Biol., 74 (2012), 1125-1142.  doi: 10.1007/s11538-011-9711-z.  Google Scholar

[7]

A. Miranville, Mathematical analysis of a parabolic-elliptic model for brain lactate kinetics in Solvability, regularity, and optimal control of boundary value problems for PDEs, Springer INdAM Ser., 22 (2017), 379-403.   Google Scholar

[8]

A. Perrillat-MercerotN. BourmeysterC. GuillevinA. Miranville and R. Guillevin, Mathematical modeling of substrates fluxes and tumor growth in the brain, Acta Biotheoretica, 67 (2019), 149-175.  doi: 10.1007/s10441-019-09343-1.  Google Scholar

show all references

References:
[1]

A. AubertR. CostalatP. J. Magistretti and L. Pellerin, Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation, Proc. National Acad. Sci. USA, 102 (2005), 16448-16453.  doi: 10.1073/pnas.0505427102.  Google Scholar

[2]

M. Conti, S. Gatti and A. Miranville, Mathematical analysis of a model for proliterative-to-invasive transition of hypoxic glioma cells,, Nonlinear Analysis, 189 (2019), Article 111572, 17 pages. doi: 10.1016/j.na.2019.111572.  Google Scholar

[3]

R. GuillevinA. Miranville and A. Perrillat-Mercerot, On a reaction-diffusion system associated with brain lactate kinetics, Electronic J. Diff. Eqn., 23 (2017), 1-16.   Google Scholar

[4]

C. GuillevinR. GuillevinA. Miranville and A. Perrillat-Mercerot, Analysis of a Mathematical model for brain lactate kinetics, Mathematical Biosciences and Engineering, 15 (2018), 1225-1242.  doi: 10.3934/mbe.2018056.  Google Scholar

[5]

J. B. McGillenC. J. KellyA. Martínez-GonzálezN. K. MartinE. A. GaffneyP. K. Maini and V. M. Pérez-García, Glucose-lactate metabolic cooperation in cancer: Insights from a spatial mathematical model and implications for targeted therapy, J. Theoret. Biol., 361 (2014), 190-203.  doi: 10.1016/j.jtbi.2014.09.018.  Google Scholar

[6]

B. Mendoza-JuezA. Martínez-GonzálezG. F. Calvo and V. M. Peréz-García, A mathematical model for the glucose-lactate metabolism of in vitro cancer cells, Bull. Math. Biol., 74 (2012), 1125-1142.  doi: 10.1007/s11538-011-9711-z.  Google Scholar

[7]

A. Miranville, Mathematical analysis of a parabolic-elliptic model for brain lactate kinetics in Solvability, regularity, and optimal control of boundary value problems for PDEs, Springer INdAM Ser., 22 (2017), 379-403.   Google Scholar

[8]

A. Perrillat-MercerotN. BourmeysterC. GuillevinA. Miranville and R. Guillevin, Mathematical modeling of substrates fluxes and tumor growth in the brain, Acta Biotheoretica, 67 (2019), 149-175.  doi: 10.1007/s10441-019-09343-1.  Google Scholar

Figure 1.  Tumor (left) and sum of the lactate concentrations $ \varphi+ \psi $ (right) at time t = 0. ($ { } u_0 (x, y) = 0.1e^{-10(x^2 +(y-2.5)^2)} $, $ \varphi_0 = 0.025mM $ inside and $ \varphi_0 = 3.854 $ outside the tumor area, $ \psi_0 = 0.329mM $ inside and $ \psi_0 = 1.256mM $ outside the tumor area.)
Figure 5.  Tumor (left) and sum of the lactate concentrations $ \varphi+ \psi $ (right) at time t = 0. ($ { } u_0 (x, y) = 0.1e^{-10(x^2 +(y-2.5)^2)} $, $ \varphi_0 = 1.817mM $ inside and $ \varphi_0 = 0.915mM $ outside the tumor area, $ \psi_0 = 2.291mM $ inside and $ \psi_0 = 0.557mM $ outside the tumor area.)
Figure 2.  Tumor (left) and sum of the lactate concentrations $ \varphi+ \psi $ (right) at time t = 10
Figure 3.  Evolution of the tumor concentration (left) and the lactate concentrations (right) with respect to time at the center of the tumor (point $ (0; 2.5) $). Evolution of the tumor diameter (below) with respect to time
Figure 4.  Concerning the tumor (left), intracellular lactate (right) and capillary lactate (below), comparison between the concentrations at the center of the tumor (green) and at the point (0.8; 2.5), initially outside the tumor (blue)
Figure 6.  Tumor (left) and sum of the lactate concentrations $ \varphi+ \psi $ (right) at time t = 10
Figure 7.  Evolution of the tumor concentration (left) and the lactate concentrations (right) with respect to time at the center of the tumor (point $ (0; 2.5) $). Evolution of the tumor diameter (below) with respect to time
Figure 8.  Concerning the tumor (left), intracellular lactate (right) and capillary lactate (below), comparison between the concentrations at the center of the tumor (green) and at the point (1; 2.5), initially outside the tumor (blue)
[1]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[2]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[3]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[4]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[5]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[6]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[7]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[8]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[9]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[10]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[11]

Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282

[12]

Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157

[13]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[14]

Niklas Kolbe, Nikolaos Sfakianakis, Christian Stinner, Christina Surulescu, Jonas Lenz. Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 443-481. doi: 10.3934/dcdsb.2020284

[15]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[16]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[17]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[18]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[19]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[20]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (22)
  • HTML views (74)
  • Cited by (0)

[Back to Top]