
-
Previous Article
Pata type contractions involving rational expressions with an application to integral equations
- DCDS-S Home
- This Issue
-
Next Article
Solutions to Chern-Simons-Schrödinger systems with external potential
Dimension reduction of thermistor models for large-area organic light-emitting diodes
Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117 Berlin, Germany |
An effective system of partial differential equations describing the heat and current flow through a thin organic light-emitting diode (OLED) mounted on a glass substrate is rigorously derived from a recently introduced fully three-dimensional $ p(x) $-Laplace thermistor model. The OLED consists of several thin layers that scale differently with respect to the multiscale parameter $ \varepsilon>0 $, which is the ratio between the total thickness and the lateral extent of the OLED. Starting point of the derivation is a rescaled formulation of the current-flow equation in the OLED for the driving potential and the heat equation in OLED and glass substrate with Joule heat term concentrated in the OLED. Assuming physically motivated scalings in the electrical flux functions, uniform a priori bounds are derived for the solutions of the three-dimensional system which facilitates the extraction of converging subsequences with limits that are identified as solutions of a dimension reduced system. In the latter, the effective current-flow equation is given by two semilinear equations in the two-dimensional cross-sections of the electrodes and algebraic equations for the continuity of the electrical fluxes through the organic layers. The effective heat equation is formulated only in the glass substrate with Joule heat term on the part of the boundary where the OLED is mounted.
References:
[1] |
E. Acerbi, G. Buttazzo and D. Percivale,
A variational definition of the strain energy for an elastic string, J. Elasticity, 25 (1991), 137-148.
doi: 10.1007/BF00042462. |
[2] |
M. Bulíček, A. Glitzky and M. Liero,
Systems describing electrothermal effects with $p(x)$-Laplace like structure for discontinuous variable exponents, SIAM J. Math. Analysis, 48 (2016), 3496-3514.
doi: 10.1137/16M1062211. |
[3] |
M. Bulíček, A. Glitzky and M. Liero,
Thermistor systems of $p(x)$-Laplace-type with discontinuous exponents via entropy solutions, Discr. Cont. Dynam. Systems Ser. S, 10 (2017), 697-713.
doi: 10.3934/dcdss.2017035. |
[4] |
P. G. Ciarlet and P. Destuynder,
A justification of a nonlinear model in plate theory, Computer Methods in Applied Mechanics and Engineering, 17/18 (1979), 227-258.
doi: 10.1016/0045-7825(79)90089-6. |
[5] |
L. Diening, P. Harjulehto, P. Hästö and M. Rủžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, Springer, Heidelberg, 2011.
doi: 10.1007/978-3-642-18363-8. |
[6] |
X. Fan and D. Zhao,
On the spaces $L^{p(x)}(\Omega)$ and $W^{k,p(x)}(\Omega)$, Journal of Mathematical Analysis and Applications, 263 (2001), 424-446.
doi: 10.1006/jmaa.2000.7617. |
[7] |
A. Fischer, T. Koprucki, K. Gärtner, M. L. Tietze, J. Brückner, B. Lüssem, K. Leo, A. Glitzky and R. Scholz,
Feel the heat: Nonlinear electrothermal feedback in organic LEDs, Adv. Funct. Mater., 24 (2014), 3367-3374.
doi: 10.1002/adfm.201303066. |
[8] |
A. Fischer, P. Pahner, B. Lüssem, K. Leo, R. Scholz, T. Koprucki, K. Gärtner and A. Glitzky, Self-heating, bistability and thermal switching in organic semiconductors, Phys. Rev. Lett., 110 (2013), 126601.
doi: 10.1103/PhysRevLett.110.126601. |
[9] |
A. Fischer, M. Pfalz, K. Vandewal, S. Lenk, M. Liero, A. Glitzky and S. Reineke, Full electrothermal OLED model including nonlinear self-heating effects, Phys. Rev. Applied, 10 (2018), 014023.
doi: 10.1103/PhysRevApplied.10.014023. |
[10] |
T. Frenzel and M. Liero, Effective diffusion in thin structures via generalized gradient systems and EDP-convergence, Discr. Cont. Dynam. Systems Ser. S, (2020), Online first
doi: 10.3934/dcdss.2020345. |
[11] |
G. Friesecke, R. D. James and S. Müller,
A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence, Archive for Rational Mechanics and Analysis, 180 (2006), 183-236.
doi: 10.1007/s00205-005-0400-7. |
[12] |
A. Kirch, A. Fischer, M. Liero, J. Fuhrmann, A. Glitzky and S. Reineke, Experimental proof of {J}oule heating-induced switched-back regions in OLEDs, Light: Science & Applications, 9 (2020), 5.
doi: 10.1038/s41377-019-0236-9. |
[13] |
P. Kordt, J. J. M. van der Holst, M. Al Helwi, W. Kowalsky, F. May, A. Badinski, C. Lennartz and D. Andrienko,
Modeling of organic light emitting diodes: From molecular to device properties, Adv. Func. Mater., 25 (2015), 1955-1971.
doi: 10.1002/adfm.201403004. |
[14] |
O. Kováčik and J. Rákosnik,
On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Mathematical Journal, 41 (1991), 592-618.
|
[15] |
M. Liero, J. Fuhrmann, A. Glitzky, T. Koprucki, A. Fischer and S. Reineke, 3{D} electrothermal simulations of organic LEDs showing negative differential resistance, in Opt. Quantum Electron., 49 (2017), 330/1–330/8.
doi: 10.1109/NUSOD.2017.8010013. |
[16] |
M. Liero, T. Koprucki, A. Fischer, R. Scholz and A. Glitzky,
$p$-Laplace thermistor modeling of electrothermal feedback in organic semiconductor devices, Z. Angew. Math. Phys., 66 (2015), 2957-2977.
doi: 10.1007/s00033-015-0560-8. |
[17] |
M. Neuss-Radu and W. Jäger,
Effective transmission conditions for reaction-diffusion processes in domains separated by an interface, SIAM Journal on Mathematical Analysis, 39 (2007), 687-720.
doi: 10.1137/060665452. |
[18] |
K. Schmidt and S. Tordeux, Asymptotic modelling of conductive thin sheets, Zeitschrift für Angewandte Mathematik und Physik, 61 (2010), 603–626.
doi: 10.1007/s00033-009-0043-x. |
show all references
References:
[1] |
E. Acerbi, G. Buttazzo and D. Percivale,
A variational definition of the strain energy for an elastic string, J. Elasticity, 25 (1991), 137-148.
doi: 10.1007/BF00042462. |
[2] |
M. Bulíček, A. Glitzky and M. Liero,
Systems describing electrothermal effects with $p(x)$-Laplace like structure for discontinuous variable exponents, SIAM J. Math. Analysis, 48 (2016), 3496-3514.
doi: 10.1137/16M1062211. |
[3] |
M. Bulíček, A. Glitzky and M. Liero,
Thermistor systems of $p(x)$-Laplace-type with discontinuous exponents via entropy solutions, Discr. Cont. Dynam. Systems Ser. S, 10 (2017), 697-713.
doi: 10.3934/dcdss.2017035. |
[4] |
P. G. Ciarlet and P. Destuynder,
A justification of a nonlinear model in plate theory, Computer Methods in Applied Mechanics and Engineering, 17/18 (1979), 227-258.
doi: 10.1016/0045-7825(79)90089-6. |
[5] |
L. Diening, P. Harjulehto, P. Hästö and M. Rủžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, Springer, Heidelberg, 2011.
doi: 10.1007/978-3-642-18363-8. |
[6] |
X. Fan and D. Zhao,
On the spaces $L^{p(x)}(\Omega)$ and $W^{k,p(x)}(\Omega)$, Journal of Mathematical Analysis and Applications, 263 (2001), 424-446.
doi: 10.1006/jmaa.2000.7617. |
[7] |
A. Fischer, T. Koprucki, K. Gärtner, M. L. Tietze, J. Brückner, B. Lüssem, K. Leo, A. Glitzky and R. Scholz,
Feel the heat: Nonlinear electrothermal feedback in organic LEDs, Adv. Funct. Mater., 24 (2014), 3367-3374.
doi: 10.1002/adfm.201303066. |
[8] |
A. Fischer, P. Pahner, B. Lüssem, K. Leo, R. Scholz, T. Koprucki, K. Gärtner and A. Glitzky, Self-heating, bistability and thermal switching in organic semiconductors, Phys. Rev. Lett., 110 (2013), 126601.
doi: 10.1103/PhysRevLett.110.126601. |
[9] |
A. Fischer, M. Pfalz, K. Vandewal, S. Lenk, M. Liero, A. Glitzky and S. Reineke, Full electrothermal OLED model including nonlinear self-heating effects, Phys. Rev. Applied, 10 (2018), 014023.
doi: 10.1103/PhysRevApplied.10.014023. |
[10] |
T. Frenzel and M. Liero, Effective diffusion in thin structures via generalized gradient systems and EDP-convergence, Discr. Cont. Dynam. Systems Ser. S, (2020), Online first
doi: 10.3934/dcdss.2020345. |
[11] |
G. Friesecke, R. D. James and S. Müller,
A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence, Archive for Rational Mechanics and Analysis, 180 (2006), 183-236.
doi: 10.1007/s00205-005-0400-7. |
[12] |
A. Kirch, A. Fischer, M. Liero, J. Fuhrmann, A. Glitzky and S. Reineke, Experimental proof of {J}oule heating-induced switched-back regions in OLEDs, Light: Science & Applications, 9 (2020), 5.
doi: 10.1038/s41377-019-0236-9. |
[13] |
P. Kordt, J. J. M. van der Holst, M. Al Helwi, W. Kowalsky, F. May, A. Badinski, C. Lennartz and D. Andrienko,
Modeling of organic light emitting diodes: From molecular to device properties, Adv. Func. Mater., 25 (2015), 1955-1971.
doi: 10.1002/adfm.201403004. |
[14] |
O. Kováčik and J. Rákosnik,
On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Mathematical Journal, 41 (1991), 592-618.
|
[15] |
M. Liero, J. Fuhrmann, A. Glitzky, T. Koprucki, A. Fischer and S. Reineke, 3{D} electrothermal simulations of organic LEDs showing negative differential resistance, in Opt. Quantum Electron., 49 (2017), 330/1–330/8.
doi: 10.1109/NUSOD.2017.8010013. |
[16] |
M. Liero, T. Koprucki, A. Fischer, R. Scholz and A. Glitzky,
$p$-Laplace thermistor modeling of electrothermal feedback in organic semiconductor devices, Z. Angew. Math. Phys., 66 (2015), 2957-2977.
doi: 10.1007/s00033-015-0560-8. |
[17] |
M. Neuss-Radu and W. Jäger,
Effective transmission conditions for reaction-diffusion processes in domains separated by an interface, SIAM Journal on Mathematical Analysis, 39 (2007), 687-720.
doi: 10.1137/060665452. |
[18] |
K. Schmidt and S. Tordeux, Asymptotic modelling of conductive thin sheets, Zeitschrift für Angewandte Mathematik und Physik, 61 (2010), 603–626.
doi: 10.1007/s00033-009-0043-x. |

[1] |
Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021004 |
[2] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[3] |
Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021024 |
[4] |
Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145 |
[5] |
Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029 |
[6] |
Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020359 |
[7] |
Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151 |
[8] |
Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020349 |
[9] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[10] |
Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345 |
[11] |
Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073 |
[12] |
Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052 |
[13] |
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 |
[14] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[15] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[16] |
Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130 |
[17] |
Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021025 |
[18] |
Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043 |
[19] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
[20] |
Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]