• Previous Article
    Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator
  • DCDS-S Home
  • This Issue
  • Next Article
    Characterisation of the pressure term in the incompressible Navier–Stokes equations on the whole space
doi: 10.3934/dcdss.2020462

A direct method of moving planes for fully nonlinear nonlocal operators and applications

Department of Mathematics, Tsinghua University, Beijing, 100084, China

* Corresponding author: Yuxia Guo

Received  July 2020 Published  November 2020

Fund Project: The first author is supported by NSFC (No. 11771235) and the second author supported by NSFC (No. 11971049)

In this paper, we are concerned with the following generalized fully nonlinear nonlocal operators:
$ F_{s,m}(u(x)) = c_{N,s} m^{ \frac{N}{2}+s} P.V. \int_{\mathbb{R}^{N}} \frac{G(u(x)-u(y))}{|x-y|^{ \frac{N}{2}+s}} K_{ \frac{N}{2}+s}(m|x-y|)dy+m^{2s}u(x), $
where
$ s\in (0,1) $
and mass
$ m>0 $
. By establishing various maximal principle and using the direct method of moving plane, we prove the monotonicity, symmetry and uniqueness for solutions to fully nonlinear nonlocal equation in unit ball,
$ \mathbb{R}^{N} $
,
$ \mathbb{R}^{N}_{+} $
and a coercive epigraph domain
$ \Omega $
in
$ \mathbb{R}^N $
respectively.
Citation: Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020462
References:
[1]

V. Ambrosio, Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator, J. Math. Phys., 57 (2016), 051502, 18 pp. doi: 10.1063/1.4949352.  Google Scholar

[2]

H. BerestyckiL. A. Caffarelli and L. Nirenberg, Inequalitites for second-order elliptic equations with applications to unbounded domains I, Duke Math. J., 81 (1996), 467-494.  doi: 10.1215/S0012-7094-96-08117-X.  Google Scholar

[3]

H. BerestyckiL. A. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math., 50 (1997), 1089-1111.  doi: 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6.  Google Scholar

[4]

C. BrandleE. ColoradoA. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Royal Soc. of Edinburgh-A: Math., 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar

[5] J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1996.   Google Scholar
[6]

H. BerestyckiF. Hamel and R. Monneau, One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J., 103 (2000), 375-396.  doi: 10.1215/S0012-7094-00-10331-6.  Google Scholar

[7]

H. Berestycki and L. Nirenberg, Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, J. Geom. Phys., 5 (1988), 237-275.  doi: 10.1016/0393-0440(88)90006-X.  Google Scholar

[8] H. Berestycki and L. Nirenberg, Some Qualitative Properties of Solutions of Semilinear Elliptic Equations in Cylindrical Domains, Analysis, et Cetera, Academic Press, Boston, MA, 1990.   Google Scholar
[9]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1-37.  doi: 10.1007/BF01244896.  Google Scholar

[10]

S.-Y. A. Chang and M. del Mar Gonzàlez, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410-1432.  doi: 10.1016/j.aim.2010.07.016.  Google Scholar

[11]

Y. Chen and B. Liu, Symmetry and non-existence of positive solutions for fractional p-Laplacian systems, Nonlinear Anal., 183 (2019), 303-322.  doi: 10.1016/j.na.2019.02.023.  Google Scholar

[12]

W. Chen and C. Li, Maximum principles for the fractional $p$-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar

[13]

W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[14]

W. Chen, Y. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Co. Pte. Ltd., Singapore, 2020. doi: 10.1142/10550.  Google Scholar

[15]

W. Chen and C. Li, Moving planes, moving spheres, and a priori estimates, J. Differential Equations, 195 (2003), 1-13.  doi: 10.1016/j.jde.2003.06.004.  Google Scholar

[16]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[17]

W. ChenY. Li and R. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.  doi: 10.1016/j.jfa.2017.02.022.  Google Scholar

[18]

P. Constantin, Euler equations, Navier-Stokes equations and turbulence, in mathematical foundation of turbulent viscous flows, Lecture Notes in Math., Springer, Berlin, 1871 (2006), 1â€"43. doi: 10.1007/11545989_1.  Google Scholar

[19]

W. Chen and S. Qi, Direct methods on fractional equations, Disc. Cont. Dyn. Syst.-A, 39 (2019), 1269-1310.  doi: 10.3934/dcds.2019055.  Google Scholar

[20]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. PDEs, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[21]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[22]

L. Caffarelli and L. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Annals of Math., 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[23]

W. Chen and L. Wu, The sliding methods for the fractional $p$-Laplacian, Adv. Math., 361 (2020), 106933, 26 pp. doi: 10.1016/j.aim.2019.106933.  Google Scholar

[24]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar

[25]

R. CarmonaW. C. Masters and B. Simon, Relativistic Schrödinger operators: Asymptotic behavior of the eigenfunctions, J. Funct. Anal., 91 (1990), 117-142.  doi: 10.1016/0022-1236(90)90049-Q.  Google Scholar

[26]

W. DaiY. FangJ. HuangY. Qin and B. Wang, Regularity and classification of solutions to static Hartree equations involving fractional Laplacians, Discrete and Continuous Dynamical Systems-A, 39 (2019), 1389-1403.  doi: 10.3934/dcds.2018117.  Google Scholar

[27]

W. Dai and Z. Liu, Classification of nonnegative solutions to static Schrödinger-Hartree and Schrödinger-Maxwell equations with combined nonlinearities, Calc. Var. & PDEs, 58 (2019), Art. 156, 24pp. doi: 10.1007/s00526-019-1595-z.  Google Scholar

[28]

W. Dai, Z. Liu and G. Qin, Classification of nonnegative solutions to static Schrödinger-Hartree-Maxwell type equations, preprint, submitted for publication, arXiv: 1909.00492. Google Scholar

[29]

W. Dai and G. Qin, Liouville type theorems for fractional and higher order Hénon-Hardy equations via the method of scaling spheres, preprint, submitted for publication, arXiv: 1810.02752. Google Scholar

[30]

W. Dai and G. Qin, Classification of nonnegative classical solutions to third-order equations, Adv. Math., 328 (2018), 822-857.  doi: 10.1016/j.aim.2018.02.016.  Google Scholar

[31]

W. Dai and G. Qin, Liouville type theorems for elliptic equations with Dirichlet conditions in exterior domains, J. Differential Equations, 269 (2020), 7231-7252.  doi: 10.1016/j.jde.2020.05.026.  Google Scholar

[32]

W. Dai, G. Qin and D. Wu, Direct methods for pseudo-relativistic Schrödinger operators, Journal of Geometric Analysis, (2020). doi: 10.1007/s12220-020-00492-1.  Google Scholar

[33]

S. DipierroN. Soave and E. Valdinoci, On fractional elliptic equations in Lipschitz sets and epigraphs: Regularity, monotonicity and rigidity results, Math. Ann., 369 (2017), 1283-1326.  doi: 10.1007/s00208-016-1487-x.  Google Scholar

[34]

A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions: Vol. Ⅱ, Journal of the Franklin Institute, McGraw-Hill, New York, 257 (1954), 150. doi: 10.1016/0016-0032(54)90080-0.  Google Scholar

[35]

M. M. Fall and V. Felli, Sharp essential self-adjointness of relativistic Schrödinger operators with a singular potential, J. Funct. Anal., 267 (2014), 1851-1877.  doi: 10.1016/j.jfa.2014.06.010.  Google Scholar

[36]

M. M. Fall and V. Felli, Unique continuation properties for relativistic Schrödinger operators with a singular potential, Discrete Contin. Dyn. Syst.-A, 35 (2015), 5827-5867.  doi: 10.3934/dcds.2015.35.5827.  Google Scholar

[37]

R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional laplacian, Comm. Pure Appl. Math., 69 (2013), 1671-1726.  doi: 10.1002/cpa.21591.  Google Scholar

[38]

E. De Giorgi, Convergence problems for functionals and operators, in Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, Rome, (1978), Pitagora, (1979).  Google Scholar

[39]

Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $R^{N}$, Commun. Partial Differ. Equ., 33 (2008), 263-284.  doi: 10.1080/03605300701257476.  Google Scholar

[40]

I. W. Herbst, Spectral theory of the operator $(p^{2}+m^{2})^{1/2}-Ze^{2}/r$, Comm. Math. Phys., 53 (1977), 285-294.   Google Scholar

[41]

J. LiuY. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $R^{N}$, J. Differ. Equ., 225 (2006), 685-709.  doi: 10.1016/j.jde.2005.10.016.  Google Scholar

[42]

B. Liu and L. Ma, Radial symmetry results for fractional Laplacian systems,, Nonlinear Anal., 146 (2016), 120-135.  doi: 10.1016/j.na.2016.08.022.  Google Scholar

[43]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195 (2010), 455-467.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[44]

S. Peng, Liouville theorems for fractional and higher order Hénon-Hardy systems on $\mathbb{R}^{n}$, Complex Variables and Elliptic Equations, 11 (2020), 1-25.  doi: 10.1080/17476933.2020.1783661.  Google Scholar

[45]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar

[46]

M. Qu and L. Yang, Solutions to the nonlinear Schrödinger systems involving the fractional Laplacian, J. Inequal. Appl., 297 (2018), 16pp. doi: 10.1186/s13660-018-1874-9.  Google Scholar

show all references

References:
[1]

V. Ambrosio, Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator, J. Math. Phys., 57 (2016), 051502, 18 pp. doi: 10.1063/1.4949352.  Google Scholar

[2]

H. BerestyckiL. A. Caffarelli and L. Nirenberg, Inequalitites for second-order elliptic equations with applications to unbounded domains I, Duke Math. J., 81 (1996), 467-494.  doi: 10.1215/S0012-7094-96-08117-X.  Google Scholar

[3]

H. BerestyckiL. A. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math., 50 (1997), 1089-1111.  doi: 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6.  Google Scholar

[4]

C. BrandleE. ColoradoA. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Royal Soc. of Edinburgh-A: Math., 143 (2013), 39-71.  doi: 10.1017/S0308210511000175.  Google Scholar

[5] J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1996.   Google Scholar
[6]

H. BerestyckiF. Hamel and R. Monneau, One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J., 103 (2000), 375-396.  doi: 10.1215/S0012-7094-00-10331-6.  Google Scholar

[7]

H. Berestycki and L. Nirenberg, Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, J. Geom. Phys., 5 (1988), 237-275.  doi: 10.1016/0393-0440(88)90006-X.  Google Scholar

[8] H. Berestycki and L. Nirenberg, Some Qualitative Properties of Solutions of Semilinear Elliptic Equations in Cylindrical Domains, Analysis, et Cetera, Academic Press, Boston, MA, 1990.   Google Scholar
[9]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1-37.  doi: 10.1007/BF01244896.  Google Scholar

[10]

S.-Y. A. Chang and M. del Mar Gonzàlez, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410-1432.  doi: 10.1016/j.aim.2010.07.016.  Google Scholar

[11]

Y. Chen and B. Liu, Symmetry and non-existence of positive solutions for fractional p-Laplacian systems, Nonlinear Anal., 183 (2019), 303-322.  doi: 10.1016/j.na.2019.02.023.  Google Scholar

[12]

W. Chen and C. Li, Maximum principles for the fractional $p$-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.  Google Scholar

[13]

W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.  Google Scholar

[14]

W. Chen, Y. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Co. Pte. Ltd., Singapore, 2020. doi: 10.1142/10550.  Google Scholar

[15]

W. Chen and C. Li, Moving planes, moving spheres, and a priori estimates, J. Differential Equations, 195 (2003), 1-13.  doi: 10.1016/j.jde.2003.06.004.  Google Scholar

[16]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[17]

W. ChenY. Li and R. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.  doi: 10.1016/j.jfa.2017.02.022.  Google Scholar

[18]

P. Constantin, Euler equations, Navier-Stokes equations and turbulence, in mathematical foundation of turbulent viscous flows, Lecture Notes in Math., Springer, Berlin, 1871 (2006), 1â€"43. doi: 10.1007/11545989_1.  Google Scholar

[19]

W. Chen and S. Qi, Direct methods on fractional equations, Disc. Cont. Dyn. Syst.-A, 39 (2019), 1269-1310.  doi: 10.3934/dcds.2019055.  Google Scholar

[20]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. PDEs, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[21]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[22]

L. Caffarelli and L. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Annals of Math., 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[23]

W. Chen and L. Wu, The sliding methods for the fractional $p$-Laplacian, Adv. Math., 361 (2020), 106933, 26 pp. doi: 10.1016/j.aim.2019.106933.  Google Scholar

[24]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar

[25]

R. CarmonaW. C. Masters and B. Simon, Relativistic Schrödinger operators: Asymptotic behavior of the eigenfunctions, J. Funct. Anal., 91 (1990), 117-142.  doi: 10.1016/0022-1236(90)90049-Q.  Google Scholar

[26]

W. DaiY. FangJ. HuangY. Qin and B. Wang, Regularity and classification of solutions to static Hartree equations involving fractional Laplacians, Discrete and Continuous Dynamical Systems-A, 39 (2019), 1389-1403.  doi: 10.3934/dcds.2018117.  Google Scholar

[27]

W. Dai and Z. Liu, Classification of nonnegative solutions to static Schrödinger-Hartree and Schrödinger-Maxwell equations with combined nonlinearities, Calc. Var. & PDEs, 58 (2019), Art. 156, 24pp. doi: 10.1007/s00526-019-1595-z.  Google Scholar

[28]

W. Dai, Z. Liu and G. Qin, Classification of nonnegative solutions to static Schrödinger-Hartree-Maxwell type equations, preprint, submitted for publication, arXiv: 1909.00492. Google Scholar

[29]

W. Dai and G. Qin, Liouville type theorems for fractional and higher order Hénon-Hardy equations via the method of scaling spheres, preprint, submitted for publication, arXiv: 1810.02752. Google Scholar

[30]

W. Dai and G. Qin, Classification of nonnegative classical solutions to third-order equations, Adv. Math., 328 (2018), 822-857.  doi: 10.1016/j.aim.2018.02.016.  Google Scholar

[31]

W. Dai and G. Qin, Liouville type theorems for elliptic equations with Dirichlet conditions in exterior domains, J. Differential Equations, 269 (2020), 7231-7252.  doi: 10.1016/j.jde.2020.05.026.  Google Scholar

[32]

W. Dai, G. Qin and D. Wu, Direct methods for pseudo-relativistic Schrödinger operators, Journal of Geometric Analysis, (2020). doi: 10.1007/s12220-020-00492-1.  Google Scholar

[33]

S. DipierroN. Soave and E. Valdinoci, On fractional elliptic equations in Lipschitz sets and epigraphs: Regularity, monotonicity and rigidity results, Math. Ann., 369 (2017), 1283-1326.  doi: 10.1007/s00208-016-1487-x.  Google Scholar

[34]

A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions: Vol. Ⅱ, Journal of the Franklin Institute, McGraw-Hill, New York, 257 (1954), 150. doi: 10.1016/0016-0032(54)90080-0.  Google Scholar

[35]

M. M. Fall and V. Felli, Sharp essential self-adjointness of relativistic Schrödinger operators with a singular potential, J. Funct. Anal., 267 (2014), 1851-1877.  doi: 10.1016/j.jfa.2014.06.010.  Google Scholar

[36]

M. M. Fall and V. Felli, Unique continuation properties for relativistic Schrödinger operators with a singular potential, Discrete Contin. Dyn. Syst.-A, 35 (2015), 5827-5867.  doi: 10.3934/dcds.2015.35.5827.  Google Scholar

[37]

R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional laplacian, Comm. Pure Appl. Math., 69 (2013), 1671-1726.  doi: 10.1002/cpa.21591.  Google Scholar

[38]

E. De Giorgi, Convergence problems for functionals and operators, in Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, Rome, (1978), Pitagora, (1979).  Google Scholar

[39]

Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $R^{N}$, Commun. Partial Differ. Equ., 33 (2008), 263-284.  doi: 10.1080/03605300701257476.  Google Scholar

[40]

I. W. Herbst, Spectral theory of the operator $(p^{2}+m^{2})^{1/2}-Ze^{2}/r$, Comm. Math. Phys., 53 (1977), 285-294.   Google Scholar

[41]

J. LiuY. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $R^{N}$, J. Differ. Equ., 225 (2006), 685-709.  doi: 10.1016/j.jde.2005.10.016.  Google Scholar

[42]

B. Liu and L. Ma, Radial symmetry results for fractional Laplacian systems,, Nonlinear Anal., 146 (2016), 120-135.  doi: 10.1016/j.na.2016.08.022.  Google Scholar

[43]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195 (2010), 455-467.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[44]

S. Peng, Liouville theorems for fractional and higher order Hénon-Hardy systems on $\mathbb{R}^{n}$, Complex Variables and Elliptic Equations, 11 (2020), 1-25.  doi: 10.1080/17476933.2020.1783661.  Google Scholar

[45]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar

[46]

M. Qu and L. Yang, Solutions to the nonlinear Schrödinger systems involving the fractional Laplacian, J. Inequal. Appl., 297 (2018), 16pp. doi: 10.1186/s13660-018-1874-9.  Google Scholar

[1]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[2]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[3]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[4]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[5]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[6]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[7]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[8]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[9]

Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021002

[10]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[11]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[12]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[13]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[14]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[15]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[16]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[17]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[18]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[19]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[20]

Bing Sun, Liangyun Chen, Yan Cao. On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021004

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (28)
  • HTML views (100)
  • Cited by (0)

Other articles
by authors

[Back to Top]