    August  2021, 14(8): 3043-3054. doi: 10.3934/dcdss.2020463

## Representation and approximation of the polar factor of an operator on a Hilbert space

 Université de Lille, Département de Mathématiques, UMR-CNRS 8524, Laboratoire P. Painlevé, 59655 Villeneuve d'Ascq Cedex. France

In memory of our friend Ezzeddine Zahrouni, who left us very early

Received  February 2020 Revised  August 2020 Published  August 2021 Early access  November 2020

Fund Project: This work was supported in part by the Labex CEMPI (ANR-11-LABX-0007-01)

Let $H$ be a complex Hilbert space and let $\mathcal{B}(H)$ be the algebra of all bounded linear operators on $H$. The polar decomposition theorem asserts that every operator $T \in \mathcal{B}(H)$ can be written as the product $T = V P$ of a partial isometry $V\in \mathcal{B}(H)$ and a positive operator $P \in \mathcal{B}(H)$ such that the kernels of $V$ and $P$ coincide. Then this decomposition is unique. $V$ is called the polar factor of $T$. Moreover, we have automatically $P = \vert T\vert = (T^*T)^{\frac{1}{2}}$. Unlike $P$, we have no representation formula that is required for $V$.

In this paper, we introduce, for $T\in \mathcal{B}(H)$, a family of functions called a "polar function" for $T$, such that the polar factor of $T$ is obtained as a limit of a net built via continuous functional calculus from this family of functions. We derive several explicit formulas representing different polar factors. These formulas allow new for methods of approximations of the polar factor of $T$.

Citation: Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 3043-3054. doi: 10.3934/dcdss.2020463
##### References:
  C. Apostol, The reduced minimum modulus, Michigan Math. J., 32 (1985), 279-294.  doi: 10.1307/mmj/1029003239.  Google Scholar  F. Chabbabi and M. Mbekhta, Polar decomposition, Aluthge and mean transforms, Linear and Multilinear Algebra and Function Spaces, 89–107, Contemp. Math., 750, Centre Rech. Math. Proc., Amer. Math. Soc., Providence, RI, . Google Scholar  J.-P. Demailly, Analyse Numérique et Equations Différentielles, Grenoble Sciences. EDP Sciences, Les Ulis, 2016. Google Scholar  R. Duong and F. Philipp, The effect of perturbations of linear operators on their polar decomposition, Proc. Amer. Math. Soc., 145 (2017), 779-790.  doi: 10.1090/proc/13252.  Google Scholar  N. J. Higham, Computing the polar decomposition with applications, SIAM. J. Stat. Comput., 7 (1986), 1160-1174.  doi: 10.1137/0907079.  Google Scholar  N. J. Higham, Functions of Matrices Theory and Computation, Society for Industrial and Applied Mathematics, Philadelphia, PA (2008). doi: 10.1137/1.9780898717778.  Google Scholar  T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin 1980. Google Scholar  R. C. Li, New perturbation bounds for the unitary polar factor, SIAM J. Matrix Anal. Appli., 16 (1995), 327-332.  doi: 10.1137/S0895479893256359.  Google Scholar  M. Mbekhta, Approximation of the polar factor of an operator acting on a Hilbert space, J. Math. Anal. Appl., 487 (2020), 123954, 12 pp. doi: 10.1016/j.jmaa.2020.123954.  Google Scholar  J. von Neumann, $\ddot{U}$ber adjungierte Funktionaloperatoren, Ann. of Math., 33 (1932), 294-310.  doi: 10.2307/1968331.  Google Scholar  G. K. Pedersen, $C^*$-Algebras and their Automorphism Groups, Academic Press INC. (London) 1979. Google Scholar  A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics, 2nd Edition, Springer, Berlin, 2007. doi: 10.1007/b98885.  Google Scholar  S. Sakai, $C^*$-algebras and $W^*$-algebras, Springer Verlag. Berlin 1971. doi: 10.1007/978-3-642-61993-9.  Google Scholar

show all references

##### References:
  C. Apostol, The reduced minimum modulus, Michigan Math. J., 32 (1985), 279-294.  doi: 10.1307/mmj/1029003239.  Google Scholar  F. Chabbabi and M. Mbekhta, Polar decomposition, Aluthge and mean transforms, Linear and Multilinear Algebra and Function Spaces, 89–107, Contemp. Math., 750, Centre Rech. Math. Proc., Amer. Math. Soc., Providence, RI, . Google Scholar  J.-P. Demailly, Analyse Numérique et Equations Différentielles, Grenoble Sciences. EDP Sciences, Les Ulis, 2016. Google Scholar  R. Duong and F. Philipp, The effect of perturbations of linear operators on their polar decomposition, Proc. Amer. Math. Soc., 145 (2017), 779-790.  doi: 10.1090/proc/13252.  Google Scholar  N. J. Higham, Computing the polar decomposition with applications, SIAM. J. Stat. Comput., 7 (1986), 1160-1174.  doi: 10.1137/0907079.  Google Scholar  N. J. Higham, Functions of Matrices Theory and Computation, Society for Industrial and Applied Mathematics, Philadelphia, PA (2008). doi: 10.1137/1.9780898717778.  Google Scholar  T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin 1980. Google Scholar  R. C. Li, New perturbation bounds for the unitary polar factor, SIAM J. Matrix Anal. Appli., 16 (1995), 327-332.  doi: 10.1137/S0895479893256359.  Google Scholar  M. Mbekhta, Approximation of the polar factor of an operator acting on a Hilbert space, J. Math. Anal. Appl., 487 (2020), 123954, 12 pp. doi: 10.1016/j.jmaa.2020.123954.  Google Scholar  J. von Neumann, $\ddot{U}$ber adjungierte Funktionaloperatoren, Ann. of Math., 33 (1932), 294-310.  doi: 10.2307/1968331.  Google Scholar  G. K. Pedersen, $C^*$-Algebras and their Automorphism Groups, Academic Press INC. (London) 1979. Google Scholar  A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics, 2nd Edition, Springer, Berlin, 2007. doi: 10.1007/b98885.  Google Scholar  S. Sakai, $C^*$-algebras and $W^*$-algebras, Springer Verlag. Berlin 1971. doi: 10.1007/978-3-642-61993-9.  Google Scholar
  Noam Presman, Simon Litsyn. Recursive descriptions of polar codes. Advances in Mathematics of Communications, 2017, 11 (1) : 1-65. doi: 10.3934/amc.2017001  Min Ye, Alexander Barg. Polar codes for distributed hierarchical source coding. Advances in Mathematics of Communications, 2015, 9 (1) : 87-103. doi: 10.3934/amc.2015.9.87  Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263  Enrique Zuazua. Controllability of partial differential equations and its semi-discrete approximations. Discrete & Continuous Dynamical Systems, 2002, 8 (2) : 469-513. doi: 10.3934/dcds.2002.8.469  Carolyn Mayer, Kathryn Haymaker, Christine A. Kelley. Channel decomposition for multilevel codes over multilevel and partial erasure channels. Advances in Mathematics of Communications, 2018, 12 (1) : 151-168. doi: 10.3934/amc.2018010  Jun Zhang, Xinyue Fan. An efficient spectral method for the Helmholtz transmission eigenvalues in polar geometries. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4799-4813. doi: 10.3934/dcdsb.2019031  Klaus Metsch. A note on Erdős-Ko-Rado sets of generators in Hermitian polar spaces. Advances in Mathematics of Communications, 2016, 10 (3) : 541-545. doi: 10.3934/amc.2016024  Mohammed Al Horani, Angelo Favini. Inverse problems for singular differential-operator equations with higher order polar singularities. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2159-2168. doi: 10.3934/dcdsb.2014.19.2159  Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901  Guji Tian, Xu-Jia Wang. Partial regularity for elliptic equations. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 899-913. doi: 10.3934/dcds.2010.28.899  Juan Dávila, Olivier Goubet. Partial regularity for a Liouville system. Discrete & Continuous Dynamical Systems, 2014, 34 (6) : 2495-2503. doi: 10.3934/dcds.2014.34.2495  Jisang Yoo. Decomposition of infinite-to-one factor codes and uniqueness of relative equilibrium states. Journal of Modern Dynamics, 2018, 13: 271-284. doi: 10.3934/jmd.2018021  Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012  Jia Li. A malaria model with partial immunity in humans. Mathematical Biosciences & Engineering, 2008, 5 (4) : 789-801. doi: 10.3934/mbe.2008.5.789  Washiela Fish, Jennifer D. Key, Eric Mwambene. Partial permutation decoding for simplex codes. Advances in Mathematics of Communications, 2012, 6 (4) : 505-516. doi: 10.3934/amc.2012.6.505  Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Partial hyperbolicity and ergodicity in dimension three. Journal of Modern Dynamics, 2008, 2 (2) : 187-208. doi: 10.3934/jmd.2008.2.187  Jérôme Coville. Nonlocal refuge model with a partial control. Discrete & Continuous Dynamical Systems, 2015, 35 (4) : 1421-1446. doi: 10.3934/dcds.2015.35.1421  Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527  Shie Mannor, Vianney Perchet, Gilles Stoltz. A primal condition for approachability with partial monitoring. Journal of Dynamics & Games, 2014, 1 (3) : 447-469. doi: 10.3934/jdg.2014.1.447  Xiaosheng Li, Gunther Uhlmann. Inverse problems with partial data in a slab. Inverse Problems & Imaging, 2010, 4 (3) : 449-462. doi: 10.3934/ipi.2010.4.449

2020 Impact Factor: 2.425