doi: 10.3934/dcdss.2020463

Representation and approximation of the polar factor of an operator on a Hilbert space

Université de Lille, Département de Mathématiques, UMR-CNRS 8524, Laboratoire P. Painlevé, 59655 Villeneuve d'Ascq Cedex. France

In memory of our friend Ezzeddine Zahrouni, who left us very early

Received  February 2020 Revised  August 2020 Published  November 2020

Fund Project: This work was supported in part by the Labex CEMPI (ANR-11-LABX-0007-01)

Let $ H $ be a complex Hilbert space and let $ \mathcal{B}(H) $ be the algebra of all bounded linear operators on $ H $. The polar decomposition theorem asserts that every operator $ T \in \mathcal{B}(H) $ can be written as the product $ T = V P $ of a partial isometry $ V\in \mathcal{B}(H) $ and a positive operator $ P \in \mathcal{B}(H) $ such that the kernels of $ V $ and $ P $ coincide. Then this decomposition is unique. $ V $ is called the polar factor of $ T $. Moreover, we have automatically $ P = \vert T\vert = (T^*T)^{\frac{1}{2}} $. Unlike $ P $, we have no representation formula that is required for $ V $.

In this paper, we introduce, for $ T\in \mathcal{B}(H) $, a family of functions called a "polar function" for $ T $, such that the polar factor of $ T $ is obtained as a limit of a net built via continuous functional calculus from this family of functions. We derive several explicit formulas representing different polar factors. These formulas allow new for methods of approximations of the polar factor of $ T $.

Citation: Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020463
References:
[1]

C. Apostol, The reduced minimum modulus, Michigan Math. J., 32 (1985), 279-294.  doi: 10.1307/mmj/1029003239.  Google Scholar

[2]

F. Chabbabi and M. Mbekhta, Polar decomposition, Aluthge and mean transforms, Linear and Multilinear Algebra and Function Spaces, 89–107, Contemp. Math., 750, Centre Rech. Math. Proc., Amer. Math. Soc., Providence, RI, [2020].  Google Scholar

[3]

J.-P. Demailly, Analyse Numérique et Equations Différentielles, Grenoble Sciences. EDP Sciences, Les Ulis, 2016.  Google Scholar

[4]

R. Duong and F. Philipp, The effect of perturbations of linear operators on their polar decomposition, Proc. Amer. Math. Soc., 145 (2017), 779-790.  doi: 10.1090/proc/13252.  Google Scholar

[5]

N. J. Higham, Computing the polar decomposition with applications, SIAM. J. Stat. Comput., 7 (1986), 1160-1174.  doi: 10.1137/0907079.  Google Scholar

[6]

N. J. Higham, Functions of Matrices Theory and Computation, Society for Industrial and Applied Mathematics, Philadelphia, PA (2008). doi: 10.1137/1.9780898717778.  Google Scholar

[7]

T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin 1980. Google Scholar

[8]

R. C. Li, New perturbation bounds for the unitary polar factor, SIAM J. Matrix Anal. Appli., 16 (1995), 327-332.  doi: 10.1137/S0895479893256359.  Google Scholar

[9]

M. Mbekhta, Approximation of the polar factor of an operator acting on a Hilbert space, J. Math. Anal. Appl., 487 (2020), 123954, 12 pp. doi: 10.1016/j.jmaa.2020.123954.  Google Scholar

[10]

J. von Neumann, $\ddot{U}$ber adjungierte Funktionaloperatoren, Ann. of Math., 33 (1932), 294-310.  doi: 10.2307/1968331.  Google Scholar

[11]

G. K. Pedersen, $C^*$-Algebras and their Automorphism Groups, Academic Press INC. (London) 1979.  Google Scholar

[12]

A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics, 2nd Edition, Springer, Berlin, 2007. doi: 10.1007/b98885.  Google Scholar

[13]

S. Sakai, $C^*$-algebras and $W^*$-algebras, Springer Verlag. Berlin 1971. doi: 10.1007/978-3-642-61993-9.  Google Scholar

show all references

References:
[1]

C. Apostol, The reduced minimum modulus, Michigan Math. J., 32 (1985), 279-294.  doi: 10.1307/mmj/1029003239.  Google Scholar

[2]

F. Chabbabi and M. Mbekhta, Polar decomposition, Aluthge and mean transforms, Linear and Multilinear Algebra and Function Spaces, 89–107, Contemp. Math., 750, Centre Rech. Math. Proc., Amer. Math. Soc., Providence, RI, [2020].  Google Scholar

[3]

J.-P. Demailly, Analyse Numérique et Equations Différentielles, Grenoble Sciences. EDP Sciences, Les Ulis, 2016.  Google Scholar

[4]

R. Duong and F. Philipp, The effect of perturbations of linear operators on their polar decomposition, Proc. Amer. Math. Soc., 145 (2017), 779-790.  doi: 10.1090/proc/13252.  Google Scholar

[5]

N. J. Higham, Computing the polar decomposition with applications, SIAM. J. Stat. Comput., 7 (1986), 1160-1174.  doi: 10.1137/0907079.  Google Scholar

[6]

N. J. Higham, Functions of Matrices Theory and Computation, Society for Industrial and Applied Mathematics, Philadelphia, PA (2008). doi: 10.1137/1.9780898717778.  Google Scholar

[7]

T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin 1980. Google Scholar

[8]

R. C. Li, New perturbation bounds for the unitary polar factor, SIAM J. Matrix Anal. Appli., 16 (1995), 327-332.  doi: 10.1137/S0895479893256359.  Google Scholar

[9]

M. Mbekhta, Approximation of the polar factor of an operator acting on a Hilbert space, J. Math. Anal. Appl., 487 (2020), 123954, 12 pp. doi: 10.1016/j.jmaa.2020.123954.  Google Scholar

[10]

J. von Neumann, $\ddot{U}$ber adjungierte Funktionaloperatoren, Ann. of Math., 33 (1932), 294-310.  doi: 10.2307/1968331.  Google Scholar

[11]

G. K. Pedersen, $C^*$-Algebras and their Automorphism Groups, Academic Press INC. (London) 1979.  Google Scholar

[12]

A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics, 2nd Edition, Springer, Berlin, 2007. doi: 10.1007/b98885.  Google Scholar

[13]

S. Sakai, $C^*$-algebras and $W^*$-algebras, Springer Verlag. Berlin 1971. doi: 10.1007/978-3-642-61993-9.  Google Scholar

[1]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[2]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012

[3]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[4]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[5]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[6]

Yantao Wang, Linlin Su. Monotone and nonmonotone clines with partial panmixia across a geographical barrier. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4019-4037. doi: 10.3934/dcds.2020056

[7]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

[8]

Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126

[9]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[10]

Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050

[11]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[12]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[13]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[14]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[15]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (16)
  • HTML views (61)
  • Cited by (0)

Other articles
by authors

[Back to Top]