doi: 10.3934/dcdss.2020466

Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves

1. 

School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran

2. 

Department of Mathematics, University of Mazandaran, Babolsar, Iran

3. 

Department of Mathematical Sciences, University of South Africa, UNISA 0003, South Africa

4. 

Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 110122, Taiwan

* Corresponding author: H. Jafari

Received  February 2020 Revised  June 2020 Published  November 2020

This paper aimed at obtaining the traveling-wave solution of the nonlinear time fractional regularized long-wave equation. In this approach, firstly, the time fractional derivative is accomplished using a finite difference with convergence order $ \mathcal{O}(\delta t^{2-\alpha}) $ for $ 0 < \alpha< 1 $ and the nonlinear term is linearized by a linearization technique. Then, the spatial terms are approximated with the help of the radial basis function (RBF). Numerical stability of the method is analyzed by applying the Von-Neumann linear stability analysis. Three invariant quantities corresponding to mass, momentum and energy are evaluated for further validation. Numerical results demonstrate the accuracy and validity of the proposed method.

Citation: Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020466
References:
[1]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. R. Soc. Lond. A., 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[2]

D. Bhardwaj and R. Shankar, A computational method for regularized long wave equation, Comput. Math. Appl., 40 (2000), 1397-1404.  doi: 10.1016/S0898-1221(00)00248-0.  Google Scholar

[3]

J. L. Bona and P. J. Bryant, A mathematical model for long waves generated by wavemakers in non-linear dispersive systems, Proc. Camb. Phil. Soc., 73 (1973), 391-405.  doi: 10.1017/S0305004100076945.  Google Scholar

[4]

J. L. BonaW. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves, Phil. Trans. R. Soc. Lond. A., 302 (1981), 457-510.  doi: 10.1098/rsta.1981.0178.  Google Scholar

[5]

A. Esen and S. Kutluay, Application of a lumped Galerkin method to the regularized long wave equation, Appl. Math. Comput., 174 (2006), 833-845.  doi: 10.1016/j.amc.2005.05.032.  Google Scholar

[6]

L. R. T. GardnerG. A. Gardner and A. Dogan, A least-squares finite element scheme for the RLW equation, Comm. Numer. Meth. Eng., 12 (1996), 795-804.  doi: 10.1002/(SICI)1099-0887(199611)12:11<795::AID-CNM22>3.0.CO;2-O.  Google Scholar

[7]

A. Golbabai and O. Nikan, A computational method based on the moving least-squares approach for pricing double barrier options in a time-fractional Black–Scholes model, Comput. Econ., 55 (2020), 119-141.  doi: 10.1007/s10614-019-09880-4.  Google Scholar

[8]

A. Golbabai, O. Nikan and T. Nikazad, Numerical investigation of the time fractional mobile-immobile advection-dispersion model arising from solute transport in porous media, Int. J. Appl. Comput. Math., 5 (2019), 50, 22 pp. doi: 10.1007/s40819-019-0635-x.  Google Scholar

[9]

B. Y. Guo and W. M Cao, The Fourier pseudospectral method with a restrain operator for the RLW equation, J. Comput. Phys., 74 (1988), 110-126.  doi: 10.1016/0021-9991(88)90072-1.  Google Scholar

[10]

A. Houwe, J. Sabi'u, Z. Hammouch and S. Y Doka, Solitary pulses of the conformable derivative nonlinear differential equation governing wave propagation in low-pass electrical transmission line, Phys. Scr., 2019. doi: 10.1088/1402-4896/ab5055.  Google Scholar

[11]

D. Kaya, S. Gülbahar, A. Yokuş and M. Gülbahar, Solutions of the fractional combined KdV–mKdV equation with collocation method using radial basis function and their geometrical obstructions, Adv. Difference Equ., 2018 (2018), 77, 16 pp. doi: 10.1186/s13662-018-1531-0.  Google Scholar

[12]

D. KumarJ. Singh and D. Baleanu, A new analysis for fractional model of regularized long-wave equation arising in ion acoustic plasma waves, Math. Methods Appl. Sci., 40 (2017), 5642-5653.  doi: 10.1002/mma.4414.  Google Scholar

[13]

D. KumarJ. SinghD. Baleanu and Su shila, Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel, Phys. A., 492 (2018), 155-167.  doi: 10.1016/j.physa.2017.10.002.  Google Scholar

[14]

R. Mokhtari and M. Mohammadi, Numerical solution of GRLW equation using Sinc-collocation method, Comput. Phys. Commun., 181 (2010), 1266-1274.  doi: 10.1016/j.cpc.2010.03.015.  Google Scholar

[15]

O. Nikan, A. Golbabai and T. Nikazad, Solitary wave solution of the nonlinear KdV-Benjamin-Bona-Mahony-Burgers model via two meshless methods, Eur. Phys. J. Plus., 134 (2019), 367. doi: 10.1140/epjp/i2019-12748-1.  Google Scholar

[16]

O. NikanH. Jafari and A. Golbabai, Numerical analysis of the fractional evolution model for heat flow in materials with memory, Alex. Eng. J., 59 (2020), 2627-2637.  doi: 10.1016/j.aej.2020.04.026.  Google Scholar

[17]

O. Nikan, J. A. Machado, A. Golbabai and T. Nikazad, Numerical approach for modeling fractal mobile/immobile transport model in porous and fractured media, Int. Commun. Heat Mass Transf., 111 (2020), 104443. doi: 10.1016/j.icheatmasstransfer.2019.104443.  Google Scholar

[18]

Ö. OruçF. Bulut and A. Esen, Numerical solutions of regularized long wave equation by Haar wavelet method, Mediterr. J. Math., 13 (2016), 3235-3253.  doi: 10.1007/s00009-016-0682-z.  Google Scholar

[19]

D. H. Peregrine, Calculations of the development of an undular bore, J. Fluid. Mech., 25 (1966), 321-330.  doi: 10.1017/S0022112066001678.  Google Scholar

[20]

I. Podlubny, Fractional Differential Equations, Acdemic Press, San Diego, 1999.  Google Scholar

[21]

K. R. Raslan, A computational method for the regularized long wave (RLW) equation, Appl. Math. Comput., 167 (2005), 1101-1118.  doi: 10.1016/j.amc.2004.06.130.  Google Scholar

[22]

B. Sakaİ. Dağ and A. Doğan, Galerkin method for the numerical solution of the RLW equation using quadratic B-splines, Int. J. Comput. Math., 81 (2004), 727-739.  doi: 10.1080/00207160310001650043.  Google Scholar

[23]

M. Shahriari, B. N. Saray, M. Lakestani and J. Manafian, Numerical treatment of the Benjamin-Bona-Mahony equation using alpert multiwavelets, Eur. Phys. J. Plus, 133 (2018), 201. doi: 10.1140/epjp/i2018-12030-2.  Google Scholar

[24]

A. I. Tolstykh and D. A. Shirobokov, On using radial basis functions in a "finite difference mode" with applications to elasticity problems, Comput. Mech., 33 (2003), 68-79.  doi: 10.1007/s00466-003-0501-9.  Google Scholar

[25]

N. ValliammalC. RavichandranZ. Hammouch and H. M. Baskonus, A new investigation on fractional-ordered neutral differential systems with state-dependent delay, Int. J. Nonlin. Sci. Num., 20 (2019), 803-809.  doi: 10.1515/ijnsns-2018-0362.  Google Scholar

show all references

References:
[1]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. R. Soc. Lond. A., 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[2]

D. Bhardwaj and R. Shankar, A computational method for regularized long wave equation, Comput. Math. Appl., 40 (2000), 1397-1404.  doi: 10.1016/S0898-1221(00)00248-0.  Google Scholar

[3]

J. L. Bona and P. J. Bryant, A mathematical model for long waves generated by wavemakers in non-linear dispersive systems, Proc. Camb. Phil. Soc., 73 (1973), 391-405.  doi: 10.1017/S0305004100076945.  Google Scholar

[4]

J. L. BonaW. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves, Phil. Trans. R. Soc. Lond. A., 302 (1981), 457-510.  doi: 10.1098/rsta.1981.0178.  Google Scholar

[5]

A. Esen and S. Kutluay, Application of a lumped Galerkin method to the regularized long wave equation, Appl. Math. Comput., 174 (2006), 833-845.  doi: 10.1016/j.amc.2005.05.032.  Google Scholar

[6]

L. R. T. GardnerG. A. Gardner and A. Dogan, A least-squares finite element scheme for the RLW equation, Comm. Numer. Meth. Eng., 12 (1996), 795-804.  doi: 10.1002/(SICI)1099-0887(199611)12:11<795::AID-CNM22>3.0.CO;2-O.  Google Scholar

[7]

A. Golbabai and O. Nikan, A computational method based on the moving least-squares approach for pricing double barrier options in a time-fractional Black–Scholes model, Comput. Econ., 55 (2020), 119-141.  doi: 10.1007/s10614-019-09880-4.  Google Scholar

[8]

A. Golbabai, O. Nikan and T. Nikazad, Numerical investigation of the time fractional mobile-immobile advection-dispersion model arising from solute transport in porous media, Int. J. Appl. Comput. Math., 5 (2019), 50, 22 pp. doi: 10.1007/s40819-019-0635-x.  Google Scholar

[9]

B. Y. Guo and W. M Cao, The Fourier pseudospectral method with a restrain operator for the RLW equation, J. Comput. Phys., 74 (1988), 110-126.  doi: 10.1016/0021-9991(88)90072-1.  Google Scholar

[10]

A. Houwe, J. Sabi'u, Z. Hammouch and S. Y Doka, Solitary pulses of the conformable derivative nonlinear differential equation governing wave propagation in low-pass electrical transmission line, Phys. Scr., 2019. doi: 10.1088/1402-4896/ab5055.  Google Scholar

[11]

D. Kaya, S. Gülbahar, A. Yokuş and M. Gülbahar, Solutions of the fractional combined KdV–mKdV equation with collocation method using radial basis function and their geometrical obstructions, Adv. Difference Equ., 2018 (2018), 77, 16 pp. doi: 10.1186/s13662-018-1531-0.  Google Scholar

[12]

D. KumarJ. Singh and D. Baleanu, A new analysis for fractional model of regularized long-wave equation arising in ion acoustic plasma waves, Math. Methods Appl. Sci., 40 (2017), 5642-5653.  doi: 10.1002/mma.4414.  Google Scholar

[13]

D. KumarJ. SinghD. Baleanu and Su shila, Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel, Phys. A., 492 (2018), 155-167.  doi: 10.1016/j.physa.2017.10.002.  Google Scholar

[14]

R. Mokhtari and M. Mohammadi, Numerical solution of GRLW equation using Sinc-collocation method, Comput. Phys. Commun., 181 (2010), 1266-1274.  doi: 10.1016/j.cpc.2010.03.015.  Google Scholar

[15]

O. Nikan, A. Golbabai and T. Nikazad, Solitary wave solution of the nonlinear KdV-Benjamin-Bona-Mahony-Burgers model via two meshless methods, Eur. Phys. J. Plus., 134 (2019), 367. doi: 10.1140/epjp/i2019-12748-1.  Google Scholar

[16]

O. NikanH. Jafari and A. Golbabai, Numerical analysis of the fractional evolution model for heat flow in materials with memory, Alex. Eng. J., 59 (2020), 2627-2637.  doi: 10.1016/j.aej.2020.04.026.  Google Scholar

[17]

O. Nikan, J. A. Machado, A. Golbabai and T. Nikazad, Numerical approach for modeling fractal mobile/immobile transport model in porous and fractured media, Int. Commun. Heat Mass Transf., 111 (2020), 104443. doi: 10.1016/j.icheatmasstransfer.2019.104443.  Google Scholar

[18]

Ö. OruçF. Bulut and A. Esen, Numerical solutions of regularized long wave equation by Haar wavelet method, Mediterr. J. Math., 13 (2016), 3235-3253.  doi: 10.1007/s00009-016-0682-z.  Google Scholar

[19]

D. H. Peregrine, Calculations of the development of an undular bore, J. Fluid. Mech., 25 (1966), 321-330.  doi: 10.1017/S0022112066001678.  Google Scholar

[20]

I. Podlubny, Fractional Differential Equations, Acdemic Press, San Diego, 1999.  Google Scholar

[21]

K. R. Raslan, A computational method for the regularized long wave (RLW) equation, Appl. Math. Comput., 167 (2005), 1101-1118.  doi: 10.1016/j.amc.2004.06.130.  Google Scholar

[22]

B. Sakaİ. Dağ and A. Doğan, Galerkin method for the numerical solution of the RLW equation using quadratic B-splines, Int. J. Comput. Math., 81 (2004), 727-739.  doi: 10.1080/00207160310001650043.  Google Scholar

[23]

M. Shahriari, B. N. Saray, M. Lakestani and J. Manafian, Numerical treatment of the Benjamin-Bona-Mahony equation using alpert multiwavelets, Eur. Phys. J. Plus, 133 (2018), 201. doi: 10.1140/epjp/i2018-12030-2.  Google Scholar

[24]

A. I. Tolstykh and D. A. Shirobokov, On using radial basis functions in a "finite difference mode" with applications to elasticity problems, Comput. Mech., 33 (2003), 68-79.  doi: 10.1007/s00466-003-0501-9.  Google Scholar

[25]

N. ValliammalC. RavichandranZ. Hammouch and H. M. Baskonus, A new investigation on fractional-ordered neutral differential systems with state-dependent delay, Int. J. Nonlin. Sci. Num., 20 (2019), 803-809.  doi: 10.1515/ijnsns-2018-0362.  Google Scholar

Figure 1.  The distributed nodes in the computational domain with a stencil
Figure 2.  The behavior of approximate solution for distinct values of $ \mathrm{d}\; (\alpha = 0.9) $ (left panel) and $ \alpha\; (\mathrm{d} = 0.03) $ (right panel)
Figure 3.  The behavior of approximate solution by letting $ \mathrm{d} = 0.03, $ $ \nu = 1, $ $ h = 0.1, $ $ {\rm{ \mathsf{ τ}}} = 0.001, $ and $ c = 1 $ for $ \alpha \in \{ 0.5, 0.75\} $
Figure 4.  The plots of single solitary wave solution and their computational errors by letting $ \alpha = 1, $ $ {\rm{ \mathsf{ τ}}} = 0.01 $, $ h = 0.125, $ and $ c = 0.8 $ for $ \mathrm{d} = 0.1 $ (up) and $ \mathrm{d} = 0.03 $ (down) at time $ T = 20 $
Table 1.  Invariants and errors for single soliton by taking $ {\rm{ \mathsf{ τ}}} = 0.01 $, $ N = 1000 $, $ \mathrm{d} = 0.1 $ and $ c = 0.5 $ when $ \alpha = 1 $ in the domain $ [-80,100] $
Method $ T $ $ N_I $ Cond($ M $) $ L_{\infty} $ $ L_2 $ $ I_1 $ $ I_2 $ $ I_3 $
RBF-FD $ 5 $ $ 631 $ $ 5.8562E+02 $ $ 1.8585E-09 $ $ 1.5072E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 5 $ $ - $ $ 7.7014E+06 $ $ 4.4431E-07 $ $ 2.4354E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 10 $ $ 631 $ $ 5.8562E+02 $ $ 3.7224E-09 $ $ 3.0141E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 10 $ $ - $ $ 7.7014E+06 $ $ 8.7584E-07 $ $ 4.8478E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 15 $ $ 631 $ $ 5.8562E+02 $ $ 5.5814E-09 $ $ 4.5208E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 15 $ $ - $ $ 7.7014E+06 $ $ 1.3066E-06 $ $ 7.2527E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 20 $ $ 631 $ $ 5.8562E+02 $ $ 7.4388E-09 $ $ 6.0272E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 20 $ $ - $ $ 7.7014E+06 $ $ 1.7364E-06 $ $ 9.6557E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 25 $ $ 631 $ $ 5.8562E+02 $ $ 9.2911E-09 $ $ 7.5333E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 25 $ $ - $ $ 7.7014E+06 $ $ 2.1649E-06 $ $ 1.2058E-05 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
Method $ T $ $ N_I $ Cond($ M $) $ L_{\infty} $ $ L_2 $ $ I_1 $ $ I_2 $ $ I_3 $
RBF-FD $ 5 $ $ 631 $ $ 5.8562E+02 $ $ 1.8585E-09 $ $ 1.5072E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 5 $ $ - $ $ 7.7014E+06 $ $ 4.4431E-07 $ $ 2.4354E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 10 $ $ 631 $ $ 5.8562E+02 $ $ 3.7224E-09 $ $ 3.0141E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 10 $ $ - $ $ 7.7014E+06 $ $ 8.7584E-07 $ $ 4.8478E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 15 $ $ 631 $ $ 5.8562E+02 $ $ 5.5814E-09 $ $ 4.5208E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 15 $ $ - $ $ 7.7014E+06 $ $ 1.3066E-06 $ $ 7.2527E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 20 $ $ 631 $ $ 5.8562E+02 $ $ 7.4388E-09 $ $ 6.0272E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 20 $ $ - $ $ 7.7014E+06 $ $ 1.7364E-06 $ $ 9.6557E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 25 $ $ 631 $ $ 5.8562E+02 $ $ 9.2911E-09 $ $ 7.5333E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 25 $ $ - $ $ 7.7014E+06 $ $ 2.1649E-06 $ $ 1.2058E-05 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
Table 2.  Invariants and errors for single soliton by letting $ {\rm{ \mathsf{ τ}}} = 0.01 $, $ N = 1000 $, $ \mathrm{d} = 0.03 $ and $ c = 0.75 $ when $ \alpha = 1 $ in the domain $ [-80,100] $
Method $ T $ $ N_I $ Cond($ M $) $ L_{\infty} $ $ L_2 $ $ I_1 $ $ I_2 $ $ I_3 $
RBF-FD $ 5 $ $ 631 $ $ 5.7100E+02 $ $ 2.4958E-07 $ $ 8.2317E-07 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 5 $ $ - $ $ 1.3531E+07 $ $ 1.6526E-05 $ $ 5.2640E-05 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 10 $ $ 631 $ $ 5.7100E+02 $ $ 3.6639E-07 $ $ 1.8503E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 10 $ $ - $ $ 1.3531E+07 $ $ 2.6723E-05 $ $ 1.2832E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 15 $ $ 631 $ $ 5.7100E+02 $ $ 4.1549E-07 $ $ 2.7871E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 15 $ $ - $ $ 1.3531E+07 $ $ 3.2940E-05 $ $ 2.0597E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 20 $ $ 631 $ $ 5.7100E+02 $ $ 4.5519E-07 $ $ 3.6033E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 20 $ $ - $ $ 1.3531E+07 $ $ 3.6973E-05 $ $ 2.7849E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 25 $ $ 631 $ $ 5.7100E+02 $ $ 1.1159E-06 $ $ 4.2789E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 25 $ $ - $ $ 1.3531E+07 $ $ 6.4814E-05 $ $ 3.4796E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
Method $ T $ $ N_I $ Cond($ M $) $ L_{\infty} $ $ L_2 $ $ I_1 $ $ I_2 $ $ I_3 $
RBF-FD $ 5 $ $ 631 $ $ 5.7100E+02 $ $ 2.4958E-07 $ $ 8.2317E-07 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 5 $ $ - $ $ 1.3531E+07 $ $ 1.6526E-05 $ $ 5.2640E-05 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 10 $ $ 631 $ $ 5.7100E+02 $ $ 3.6639E-07 $ $ 1.8503E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 10 $ $ - $ $ 1.3531E+07 $ $ 2.6723E-05 $ $ 1.2832E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 15 $ $ 631 $ $ 5.7100E+02 $ $ 4.1549E-07 $ $ 2.7871E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 15 $ $ - $ $ 1.3531E+07 $ $ 3.2940E-05 $ $ 2.0597E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 20 $ $ 631 $ $ 5.7100E+02 $ $ 4.5519E-07 $ $ 3.6033E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 20 $ $ - $ $ 1.3531E+07 $ $ 3.6973E-05 $ $ 2.7849E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 25 $ $ 631 $ $ 5.7100E+02 $ $ 1.1159E-06 $ $ 4.2789E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 25 $ $ - $ $ 1.3531E+07 $ $ 6.4814E-05 $ $ 3.4796E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
Table 3.  Invariants and errors norms by letting $ T = 20, {\rm{ \mathsf{ τ}}} = 0.1 $, $ N = 1000 $, $ \mathrm{d} = 0.1 $ and $ c = 0.75 $ when $ \alpha = 1 $ in the domain $ [-80,100] $
Methods$ L_{\infty} $$ L_2 $ $ I_1 $ $ I_2 $ $ I_3 $
RBF-FD $ 7.44E-09 $$ 6.03E-08 $ $ 3.97600 $$ 0.809656 $ $ 2.57640 $
[6] $ 8.60E-05 $$ 2.20E-04 $ $ 3.97989 $$ 0.81046 $ $ 2.57902 $
[22] $ 1.40E-05 $$ 1.50E-04 $ $ 3.96466 $$ 0.80963 $ $ 2.56971 $
[21] $ 2.27E-04 $$ 5.32E-04 $ $ 3.97803 $$ 0.80972 $ $ 2.57657 $
[5] $ 2.10E-03 $$ 5.50E-03 $ $ 3.97997 $$ 0.81045 $ $ 2.57901 $
[18] $ 1.15E-04 $$ 3.02E-04 $ $ 3.97988 $$ 0.81046 $ $ 2.57900 $
Methods$ L_{\infty} $$ L_2 $ $ I_1 $ $ I_2 $ $ I_3 $
RBF-FD $ 7.44E-09 $$ 6.03E-08 $ $ 3.97600 $$ 0.809656 $ $ 2.57640 $
[6] $ 8.60E-05 $$ 2.20E-04 $ $ 3.97989 $$ 0.81046 $ $ 2.57902 $
[22] $ 1.40E-05 $$ 1.50E-04 $ $ 3.96466 $$ 0.80963 $ $ 2.56971 $
[21] $ 2.27E-04 $$ 5.32E-04 $ $ 3.97803 $$ 0.80972 $ $ 2.57657 $
[5] $ 2.10E-03 $$ 5.50E-03 $ $ 3.97997 $$ 0.81045 $ $ 2.57901 $
[18] $ 1.15E-04 $$ 3.02E-04 $ $ 3.97988 $$ 0.81046 $ $ 2.57900 $
Table 4.  The approximate solution $ u(x, t) $ for $ \mathrm{d} = 0.03 $ and $ x = 2 $ by taking $ {\rm{ \mathsf{ τ}}} = 0.0001, $ $ h = 0.1 $ and $ c = 1 $
$ T $$ \alpha = 0.8 $
Method of [12]Method of [13]Present Method
$ 0.01 $ $ 0.08519576412 $ $ 0.07279537400 $ $ 0.08537651205 $
$ 0.02 $$ 0.08357213920 $ $ 0.07279537400 $ $ 0.08264519947 $
$ 0.03 $$ 0.08214278398 $ $ 0.07128811205 $$ 0.08181623410 $
$ 0.04 $$ 0.08083623113 $ $ 0.07066631588 $ $ 0.08090025798 $
$ 0.05 $$ 0.07962032856 $ $ 0.07198119193 $ $ 0.07973865076 $
$ 0.06 $$ 0.07847675139 $ $ 0.06956555612 $$ 0.07781678793 $
$ 0.07 $$ 0.07739366105 $ $ 0.06906896549 $$ 0.07695183111 $
$ 0.08 $$ 0.07636277983 $ $ 0.06860131956 $$ 0.07614922701 $
$ 0.09 $$ 0.07590726375 $ $ 0.06815922842 $$ 0.07520979105 $
$ 0.10 $$ 0.07443460092 $ $ 0.06774010956 $$ 0.07487357774 $
$ T $$ \alpha = 0.8 $
Method of [12]Method of [13]Present Method
$ 0.01 $ $ 0.08519576412 $ $ 0.07279537400 $ $ 0.08537651205 $
$ 0.02 $$ 0.08357213920 $ $ 0.07279537400 $ $ 0.08264519947 $
$ 0.03 $$ 0.08214278398 $ $ 0.07128811205 $$ 0.08181623410 $
$ 0.04 $$ 0.08083623113 $ $ 0.07066631588 $ $ 0.08090025798 $
$ 0.05 $$ 0.07962032856 $ $ 0.07198119193 $ $ 0.07973865076 $
$ 0.06 $$ 0.07847675139 $ $ 0.06956555612 $$ 0.07781678793 $
$ 0.07 $$ 0.07739366105 $ $ 0.06906896549 $$ 0.07695183111 $
$ 0.08 $$ 0.07636277983 $ $ 0.06860131956 $$ 0.07614922701 $
$ 0.09 $$ 0.07590726375 $ $ 0.06815922842 $$ 0.07520979105 $
$ 0.10 $$ 0.07443460092 $ $ 0.06774010956 $$ 0.07487357774 $
Table 5.  The approximate solution $ u(x, t) $ for $ \mathrm{d} = 0.03 $ and $ x = 2 $ by letting $ {\rm{ \mathsf{ τ}}} = 0.0001, $ $ h = 0.1 $ and $ c = 1 $
$ T $$ \alpha = 0.9 $
Method of [12]Method of [13]Present Method
$ 0.01 $$ 0.08603543519 $ $ 0.07872750691 $$ 0.08640643159 $
$ 0.02 $$ 0.08484592054 $ $ 0.07786464651 $$ 0.08489204894 $
$ 0.03 $$ 0.08373410921 $ $ 0.07706362124 $$ 0.08360036158 $
$ 0.04 $$ 0.08267550004 $ $ 0.07630395167 $$ 0.08286912350 $
$ 0.05 $$ 0.08165864444 $ $ 0.07557650967 $$ 0.08227833554 $
$ 0.06 $$ 0.08067684029 $ $ 0.07487606663 $$ 0.08184132412 $
$ 0.07 $$ 0.07972566456 $ $ 0.07419921448 $$ 0.07986678865 $
$ 0.08 $$ 0.07880196853 $ $ 0.07354354582 $$ 0.07819674713 $
$ 0.09 $$ 0.07790338981 $ $ 0.07290726375 $$ 0.07660742243 $
$ 0.10 $$ 0.07702808602 $ $ 0.07228897179 $$ 0.07661724331 $
$ T $$ \alpha = 0.9 $
Method of [12]Method of [13]Present Method
$ 0.01 $$ 0.08603543519 $ $ 0.07872750691 $$ 0.08640643159 $
$ 0.02 $$ 0.08484592054 $ $ 0.07786464651 $$ 0.08489204894 $
$ 0.03 $$ 0.08373410921 $ $ 0.07706362124 $$ 0.08360036158 $
$ 0.04 $$ 0.08267550004 $ $ 0.07630395167 $$ 0.08286912350 $
$ 0.05 $$ 0.08165864444 $ $ 0.07557650967 $$ 0.08227833554 $
$ 0.06 $$ 0.08067684029 $ $ 0.07487606663 $$ 0.08184132412 $
$ 0.07 $$ 0.07972566456 $ $ 0.07419921448 $$ 0.07986678865 $
$ 0.08 $$ 0.07880196853 $ $ 0.07354354582 $$ 0.07819674713 $
$ 0.09 $$ 0.07790338981 $ $ 0.07290726375 $$ 0.07660742243 $
$ 0.10 $$ 0.07702808602 $ $ 0.07228897179 $$ 0.07661724331 $
Table 6.  Invariants for single solitary wave by taking $ \mathrm{d} = 0.03, $ $ h = 0.1, $ and $ c = 0.95 $ when $ \alpha = 0.5 $
$ T $ $ I_1 $$ I_2 $$ I_3 $
$ 0.00 $ $ 0.197708647779586 $ $ 0.128293299043990 $ $ 0.387537096937904 $
$ 0.01 $ $ 0.197709389335031 $$ 0.126849748687847 $$ 0.387166785333068 $
$ 0.02 $ $ 0.197709389335031 $$ 0.126832805997773 $$ 0.387113999130940 $
$ 0.03 $ $ 0.197705310408835 $$ 0.126802946718958 $$ 0.387058367254051 $
$ 0.04 $ $ 0.197698761277219 $$ 0.126780218019371 $$ 0.387001260827619 $
$ 0.05 $ $ 0.197690652584066 $$ 0.126757804752181 $$ 0.386943215828569 $
$ 0.06 $ $ 0.197681450241377 $$ 0.126735635338625 $$ 0.386884508751169 $
$ 0.07 $ $ 0.197671429969532 $$ 0.126713659452037 $$ 0.386825304512479 $
$ 0.08 $ $ 0.197660770590404 $$ 0.126691840813316 $$ 0.386765710882986 $
$ 0.09 $ $ 0.197649595685292 $$ 0.126670152526776 $$ 0.386705802887836 $
$ 0.10 $ $ 0.197637994751921 $$ 0.126648574139578 $$ 0.386645635247663 $
$ T $ $ I_1 $$ I_2 $$ I_3 $
$ 0.00 $ $ 0.197708647779586 $ $ 0.128293299043990 $ $ 0.387537096937904 $
$ 0.01 $ $ 0.197709389335031 $$ 0.126849748687847 $$ 0.387166785333068 $
$ 0.02 $ $ 0.197709389335031 $$ 0.126832805997773 $$ 0.387113999130940 $
$ 0.03 $ $ 0.197705310408835 $$ 0.126802946718958 $$ 0.387058367254051 $
$ 0.04 $ $ 0.197698761277219 $$ 0.126780218019371 $$ 0.387001260827619 $
$ 0.05 $ $ 0.197690652584066 $$ 0.126757804752181 $$ 0.386943215828569 $
$ 0.06 $ $ 0.197681450241377 $$ 0.126735635338625 $$ 0.386884508751169 $
$ 0.07 $ $ 0.197671429969532 $$ 0.126713659452037 $$ 0.386825304512479 $
$ 0.08 $ $ 0.197660770590404 $$ 0.126691840813316 $$ 0.386765710882986 $
$ 0.09 $ $ 0.197649595685292 $$ 0.126670152526776 $$ 0.386705802887836 $
$ 0.10 $ $ 0.197637994751921 $$ 0.126648574139578 $$ 0.386645635247663 $
[1]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[2]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[3]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[4]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282

[5]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[6]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[7]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[8]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[9]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[12]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[13]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[14]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[15]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[16]

Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029

[17]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[18]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020394

[19]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[20]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (26)
  • HTML views (103)
  • Cited by (0)

[Back to Top]