-
Previous Article
Fault-tolerant anti-synchronization control for chaotic switched neural networks with time delay and reaction diffusion
- DCDS-S Home
- This Issue
-
Next Article
A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion
On a linearized Mullins-Sekerka/Stokes system for two-phase flows
Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany |
We study a linearized Mullins-Sekerka/Stokes system in a bounded domain with various boundary conditions. This system plays an important role to prove the convergence of a Stokes/Cahn-Hilliard system to its sharp interface limit, which is a Stokes/Mullins-Sekerka system, and to prove solvability of the latter system locally in time. We prove solvability of the linearized system in suitable $ L^2 $-Sobolev spaces with the aid of a maximal regularity result for non-autonomous abstract linear evolution equations.
References:
[1] |
H. Abels and Y. Liu,
Sharp interface limit for a Stokes/Allen-Cahn system, Archives for Rational Mechanics and Analysis, 229 (2018), 417-502.
doi: 10.1007/s00205-018-1220-x. |
[2] |
H. Abels and A. Marquardt, Sharp interface limit of a Stokes/Cahn-Hilliard system, part II: Approximate solutions, preprint, arXiv: 2003.14267. Google Scholar |
[3] |
H. Abels and A. Marquardt, Sharp interface limit of a Stokes/Cahn-Hilliard system, part I: Convergence result, preprint, arXiv: 2003.03139. Google Scholar |
[4] |
H. Abels and M. Wilke,
Well-posedness and qualitative behaviour of solutions for a two-phase Navier-Stokes/Mullins-Sekerka system, Interfaces and Free Boundaries, 15 (2013), 39-75.
doi: 10.4171/IFB/294. |
[5] |
G. Alessandrini, A. Morassi and E. Rosset, The linear constraint in Poincaré and Korn type inequalities, Forum Mathematicum 20 (2006), no. 3,557–-569.
doi: 10.1515/FORUM.2008.028. |
[6] |
N. D. Alikakos, P. W. Bates and X. Chen,
Convergence of the Cahn-Hilliard equation to the Hele-Shaw model, Archive for Rational Mechanics and Analysis, 128 (1994), 165-205.
doi: 10.1007/BF00375025. |
[7] |
W. Arendt, R. Chill, S. Fornaro and C. Poupaud,
$L^p$-Maximal regularity for non-autonomous evolution equations, Journal of Differential Equations, 237 (2007), 1-26.
doi: 10.1016/j.jde.2007.02.010. |
[8] |
X. Chen, D. Hilhorst and E. Logak,
Mass conserving Allen-Cahn equation and volume preserving mean curvature flow, Interfaces and Free Boundaries, 12 (2010), 527-549.
doi: 10.4171/IFB/244. |
[9] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, second ed., Springer Monographs in Mathematics, 2011.
doi: 10.1007/978-0-387-09620-9. |
[10] |
W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.
![]() |
[11] |
J. Pruess and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Birkhäuser/Springer, [Cham], 2016.
doi: 10.1007/978-3-319-27698-4. |
[12] |
S. Schaubeck, Sharp Interface Limits for Diffuse Interface Models, Ph.D. thesis, University of Regensburg, urn: nbn: de: bvb: 355-epub-294622, 2014. Google Scholar |
[13] |
Y. Shibata and S. Shimizu,
On a resolvent estimate of the interface problem for the Stokes system in a bounded domain, Journal of Differential Equations, 191 (2003), 408-444.
doi: 10.1016/S0022-0396(03)00023-8. |
[14] |
——, On the Lp-Lq maximal regularity of the Neumann problem for the Stokes equations in a bounded domain, Journal für die reine und angewandte Mathematik 615 (2007), 1–53. Google Scholar |
[15] |
V. A. Solonnikov and V. E. Ščadilov, A certain boundary value problem for the stationary system of Navier-Stokes equations, Trudy Mat. Inst. Steklov. 125 (1973), 196–210,235, Boundary value problems of mathematical physics, 8. |
show all references
References:
[1] |
H. Abels and Y. Liu,
Sharp interface limit for a Stokes/Allen-Cahn system, Archives for Rational Mechanics and Analysis, 229 (2018), 417-502.
doi: 10.1007/s00205-018-1220-x. |
[2] |
H. Abels and A. Marquardt, Sharp interface limit of a Stokes/Cahn-Hilliard system, part II: Approximate solutions, preprint, arXiv: 2003.14267. Google Scholar |
[3] |
H. Abels and A. Marquardt, Sharp interface limit of a Stokes/Cahn-Hilliard system, part I: Convergence result, preprint, arXiv: 2003.03139. Google Scholar |
[4] |
H. Abels and M. Wilke,
Well-posedness and qualitative behaviour of solutions for a two-phase Navier-Stokes/Mullins-Sekerka system, Interfaces and Free Boundaries, 15 (2013), 39-75.
doi: 10.4171/IFB/294. |
[5] |
G. Alessandrini, A. Morassi and E. Rosset, The linear constraint in Poincaré and Korn type inequalities, Forum Mathematicum 20 (2006), no. 3,557–-569.
doi: 10.1515/FORUM.2008.028. |
[6] |
N. D. Alikakos, P. W. Bates and X. Chen,
Convergence of the Cahn-Hilliard equation to the Hele-Shaw model, Archive for Rational Mechanics and Analysis, 128 (1994), 165-205.
doi: 10.1007/BF00375025. |
[7] |
W. Arendt, R. Chill, S. Fornaro and C. Poupaud,
$L^p$-Maximal regularity for non-autonomous evolution equations, Journal of Differential Equations, 237 (2007), 1-26.
doi: 10.1016/j.jde.2007.02.010. |
[8] |
X. Chen, D. Hilhorst and E. Logak,
Mass conserving Allen-Cahn equation and volume preserving mean curvature flow, Interfaces and Free Boundaries, 12 (2010), 527-549.
doi: 10.4171/IFB/244. |
[9] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, second ed., Springer Monographs in Mathematics, 2011.
doi: 10.1007/978-0-387-09620-9. |
[10] |
W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.
![]() |
[11] |
J. Pruess and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Birkhäuser/Springer, [Cham], 2016.
doi: 10.1007/978-3-319-27698-4. |
[12] |
S. Schaubeck, Sharp Interface Limits for Diffuse Interface Models, Ph.D. thesis, University of Regensburg, urn: nbn: de: bvb: 355-epub-294622, 2014. Google Scholar |
[13] |
Y. Shibata and S. Shimizu,
On a resolvent estimate of the interface problem for the Stokes system in a bounded domain, Journal of Differential Equations, 191 (2003), 408-444.
doi: 10.1016/S0022-0396(03)00023-8. |
[14] |
——, On the Lp-Lq maximal regularity of the Neumann problem for the Stokes equations in a bounded domain, Journal für die reine und angewandte Mathematik 615 (2007), 1–53. Google Scholar |
[15] |
V. A. Solonnikov and V. E. Ščadilov, A certain boundary value problem for the stationary system of Navier-Stokes equations, Trudy Mat. Inst. Steklov. 125 (1973), 196–210,235, Boundary value problems of mathematical physics, 8. |
[1] |
Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303 |
[2] |
Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020277 |
[3] |
Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020289 |
[4] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
[5] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[6] |
Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020402 |
[7] |
Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021024 |
[8] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[9] |
Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380 |
[10] |
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364 |
[11] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[12] |
Azmy S. Ackleh, Nicolas Saintier. Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1469-1497. doi: 10.3934/dcdsb.2020169 |
[13] |
Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081 |
[14] |
Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495 |
[15] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[16] |
João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321 |
[17] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[18] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[19] |
Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020051 |
[20] |
Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]