\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms

  • * Corresponding author: Gongbao Li

    * Corresponding author: Gongbao Li 
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we prove two new improved Sobolev inequalities involving weighted Morrey norms in $ {\dot{H}}^s( \mathbb{R}^{n})\times {\dot{H}}^s( \mathbb{R}^{n}) $ and $ {D}^{1, p}( \mathbb{R}^{n})\times{D}^{1, p}( \mathbb{R}^{n}) $. For instance, the corresponding inequality in $ {\dot{H}}^s( \mathbb{R}^{n})\!\times\! {\dot{H}}^s( \mathbb{R}^{n}) $ states that: there exists $ C\! = \!C(n, s, \alpha, \eta_1, \eta_2)\!>\!0 $ such that for each $ (u, v) \!\in\! {\dot{H}}^s( \mathbb{R}^{n})\!\times\! {\dot{H}}^s( \mathbb{R}^{n}) $, $ p\!\in\![2, 2^*_{s}(\alpha)) $ and $ \theta \!\in\! (\bar{\theta}, \frac{2\eta_1}{2^*_{s}(\alpha)}) $, it holds that

    $ \Big( \int_{ \mathbb{R}^{n} } \frac{ |u|^{\eta_1} |v|^{\eta_2} } { |y|^{\alpha} } dy \Big)^{ \frac{1}{ 2^*_{s} (\alpha) }} \nonumber \\ \!\leq\! C ||u||_{{\dot{H}}^s(\mathbb{R}^{n})}^{\frac{\theta}{2}} ||v||_{{\dot{H}}^s(\mathbb{R}^{n})}^{\frac{\theta}{2}+\frac{\eta_2-\eta_1}{2^*_{s} (\alpha)}} ||(uv)||^{\frac{\eta_1}{2^*_{s} (\alpha)}-\frac{\theta}{2}}_{ L^{\frac{p}{2}, \frac{p}{2}(n-2s+r)}(\mathbb{R}^{n}, |y|^{-\frac{p}{2}r}) }, ~~~~(0)$

    where $ s \!\in\! (0, 1) $, $ 0\!<\!\alpha\!<\!2s\!<\!n $, $ \eta_1\!+\!\eta_2\! = \!2^*_{s}(\alpha)\!: = \!\frac{2(n-\alpha)}{n-2s} $, $ 1\!<\!\eta_1\!\leq\!\eta_2\!<\!\eta_1\!+\!\frac{\alpha}{s} $, $ \bar{\theta}\! = \!\max \Big\{ \frac{2}{2^*_{s}(\alpha)}, \frac{2\eta_1}{2^*_{s}(\alpha)} -\frac{2t(\frac{\alpha}{2s}-\frac{\alpha}{n})}{2^*_{s}(\alpha) -\frac{2\alpha}{n}}\Big\} $, $ t\! = \!1\!-\!\frac{(\eta_2-\eta_1)s}{\alpha} $ and $ r\! = \!\frac{2\alpha}{ 2^*_{s}(\alpha) } $. This inequality, together with its counterpart in $ {D}^{1, p}( \mathbb{R}^{n})\!\times\!{D}^{1, p}( \mathbb{R}^{n}) $ extend similar Sobolev inequality in $ {\dot{H}}^s( \mathbb{R}^{n}) $ as well as in $ {D}^{1, p}( \mathbb{R}^{n}) $ obtained by G. Palatucci and A. Pisante [Calc. Var., 50 (2014)] to the product spaces $ {\dot{H}}^s( \mathbb{R}^{n})\times {\dot{H}}^s( \mathbb{R}^{n}) $ and $ {D}^{1, p}( \mathbb{R}^{n})\times{D}^{1, p}( \mathbb{R}^{n}) $, respectively.

    With the help of the inequality (1), we succeed in obtaining some new existence results for doubly critical elliptic systems involving fractional Laplacian and Hardy terms.

    Mathematics Subject Classification: Primary: 35J50; Secondary: 35A23, 35B33.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.
    [2] R. B. Assuncao, J. C. Silva and O. H. Miyagaki, A fractional p-Laplacian problem with mul-tiple critical Hardy-Sobolev nonlinearities, Milan J. Math., 88 (2020), 65–97. arXiv: 1906.07227. doi: 10.1007/s00032-020-00308-5.
    [3] J. BellazziniM. GhimentiC. MercuriV. Moroz and J. V. Schaftingen, Sharp Gagliardo-Nirenberg inequalities in fractional Coulomb-Sobolev spaces, Trans. Amer. Math. Soc., 370 (2018), 8285-8310.  doi: 10.1090/tran/7426.
    [4] H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.1090/S0002-9939-1983-0699419-3.
    [5] L. Caffarelli, Non-local diffusions, drifts and games, in: Nonlinear Partial Differential Equations, Abel Symposia No. 7, Springer, Heidelberg, 2012, 37–52. doi: 10.1007/978-3-642-25361-4_3.
    [6] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.
    [7] F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and simmetry of extremal functions, Comm. Pure Appl. Math., 54 (2001), 229-258.  doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.
    [8] W. Chen, Fractional elliptic problems with two critical Sobolev-Hardy exponents, Electron. J. Differential Equations, 2018 (2018).
    [9] Z. Chen and W. Zou, Existence and symmetry of positive ground states for a doubly critical Schrödinger system, Trans. Amer. Math. Soc., 367 (2015), 3599-3646.  doi: 10.1090/S0002-9947-2014-06237-5.
    [10] J.-L. Chern and C.-S. Lin, Minimizers of Caffarelli-Kohn-Nirenberg inequalities with the singularity on the boundary, Arch. Ration. Mech. Anal., 197 (2010), 401-432.  doi: 10.1007/s00205-009-0269-y.
    [11] G. Difazio and M. A. Ragusa, Interior Estimates in Morrey Spaces for Strong Solutions to Nondivergence Form Equations with Discontinuous Coefficients, J. Funct. Anal., 112 (1993), 241-256.  doi: 10.1006/jfan.1993.1032.
    [12] S. Dipierro, L. Montoro, I. Peral and B. Sciunzi, Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential, Calc. Var. Partial Differ. Equ., 55 (2016), Art. 99, 29 pp. doi: 10.1007/s00526-016-1032-5.
    [13] R. FilippucciP. Pucci and F. Robert, On a $p$-Laplace equation with multiple critical nonlinearities, J. Math. Pures Appl., 91 (2009), 156-177.  doi: 10.1016/j.matpur.2008.09.008.
    [14] R. L. FrankE. H. Lieb and R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., 21 (2008), 925-950.  doi: 10.1090/S0894-0347-07-00582-6.
    [15] N. Ghoussoub and S. Shakerian, Borderline variational problems involving fractional Laplacians and critical singularities, Adv. Nonlinear Stud., 15 (2015), 527-555.  doi: 10.1515/ans-2015-0302.
    [16] N. Ghoussoub and A. Moradifam, Functional Inequalities: New Perspectives and New Applications, Mathematical Surveys and Monographs, vol. 187, Amer. Math. Soc., Providence, RI, 2013. doi: 10.1090/surv/187.
    [17] N. Ghoussoub and F. Robert, The Hardy-Schr$\ddot{o}$dinger operator with interior singularity: The remaining cases, Calc. Var. Partial Differ. Equ., 56 (2017). doi: 10.1007/s00526-017-1238-1.
    [18] N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 5703-5743.  doi: 10.1090/S0002-9947-00-02560-5.
    [19] T. Gou and L. Jeanjean, Multiple positive normalized solutions for nonlinear Schrödinger systems, Nonlinearity, 31 (2018), 2319-2345.  doi: 10.1088/1361-6544/aab0bf.
    [20] Y. Huang and D. Kang, On the singular elliptic systems involving multiple critical Sobolev exponents, Nonlinear Anal., 74 (2011), 400-412.  doi: 10.1016/j.na.2010.08.051.
    [21] D. Kang and G. Li, On the elliptic problems involving multi-singular inverse square potentials and multi-critical Sobolev-Hardy exponents, Nonlinear Anal., 66 (2007), 1806-1816.  doi: 10.1016/j.na.2006.02.026.
    [22] A. E. KhalilS. Kellati and A. Touzani, On the principal frequency curve of the p-biharmonic operator, Arab J. Math. Sci., 17 (2011), 89-99.  doi: 10.1016/j.ajmsc.2011.01.002.
    [23] Y. Komori and S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr., 282 (2009), 219-231.  doi: 10.1002/mana.200610733.
    [24] G. Li and T. Yang, The existence of a nontrivial weak solution to a double critical problem involving fractional Laplacian in ${ \mathbb{R}}^n$ with a Hardy term, Acta Math. Sci. Ser. B (Engl. Ed.), 40 (2020), 1808–1830. arXiv: 1908.02536. doi: 10.1007/s10473-020-0613-8.
    [25] E. H. Lieb and M. Loss, Analysis, 2$^{nd}$ edition, Volume 14 of Graduate Studies in Mathematics, Amer. Math. Soc., 2001. doi: 10.1090/gsm/014.
    [26] L. D'Ambrosio and E. Jannelli, Nonlinear critical problems for the biharmonic operator with Hardy potential, Calc. Var. Partial Differ. Equ., 54 (2015), 365-396.  doi: 10.1007/s00526-014-0789-7.
    [27] A. L. Mazzucato, Besov-Morrey spaces: Function space theory and applications to non-linear PDE, Trans. Amer. Math. Soc., 355 (2003), 1297-1364.  doi: 10.1090/S0002-9947-02-03214-2.
    [28] C. Mercuri, V. Moroz and J. V. Schaftingen, Groundstates and radial solutions to nonlinear Schrödinger-Poisson-Slater equations at the critical frequency, Calc. Var. Partial Differ. Equ., 55 (2016). doi: 10.1007/s00526-016-1079-3.
    [29] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126-166.  doi: 10.1090/S0002-9947-1938-1501936-8.
    [30] B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261-274.  doi: 10.1090/S0002-9947-1974-0340523-6.
    [31] E. D. NezzaG. Palatucci and E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.
    [32] G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differ. Equ., 50 (2014), 799-829.  doi: 10.1007/s00526-013-0656-y.
    [33] S. RastegarzadehN. Nyamoradi and V. Ambrosio, Existence and multiplicity of solutions for Hardy nonlocal fractional elliptic equations involving critical nonlinearities, J. Fixed Point Theory Appl., 21 (2019), 1-22.  doi: 10.1007/s11784-018-0653-z.
    [34] Y. Sawano, Generalized Morrey spaces for non-doubling measures, Nonlinear Differ. Equ. Appl., 15 (2008), 413-425.  doi: 10.1007/s00030-008-6032-5.
    [35] E. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math., 114 (1992), 813-874.  doi: 10.2307/2374799.
    [36] R. Servadei and E. Raffaella, Variational methods for non-local operators of eliliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.  doi: 10.3934/dcds.2013.33.2105.
    [37] Y. Su, H. Chen, S. Liu and G. Che, Ground state solution of p-Laplacian equation with finite many critical nonlinearities, Complex Var. Elliptic Equ., 65 (2020). doi: 10.1080/17476933.2020.1720005.
    [38] Y. Wang and Y. Shen, Nonlinear biharmonic equations with Hardy potential and critical parameter, J. Math. Anal. Appl., 355 (2009), 649-660.  doi: 10.1016/j.jmaa.2009.01.076.
    [39] J. Wang and J. Shi, Standing waves for a coupled nonlinear Hartree equations with nonlocal interaction, Calc. Var. Partial Differ. Equ., 56 (2017). doi: 10.1007/s00526-017-1268-8.
    [40] L. WangB. Zhang and H. Zhang, Fractional Laplacian system involving doubly critical nonlinearities in $ \mathbb{R}^N$, Electron. J. Qual. Theory Differ. Equ., 57 (2017), 1-17.  doi: 10.14232/ejqtde.2017.1.57.
    [41] J. Yang, Fractional Hardy-Sobolev inequality in $ \mathbb{R}^N$, Nonlinear Anal., 119 (2015), 179-185.  doi: 10.1016/j.na.2014.09.009.
    [42] J. Yang and F. Wu, Doubly critical problems involving fractional Laplacians in ${ \mathbb{R}}^N$, Adv. Nonlinear Stud., 17 (2017), 677-690.  doi: 10.1515/ans-2016-6012.
  • 加载中
SHARE

Article Metrics

HTML views(529) PDF downloads(307) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return