
-
Previous Article
A hyperbolic-elliptic-parabolic PDE model describing chemotactic E. Coli colonies
- DCDS-S Home
- This Issue
-
Next Article
Large-time existence for one-dimensional Green-Naghdi equations with vorticity
Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound
1. | Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia |
2. | UR ANALYSE NON-LINÉAIRE ET GÉOMETRIE, UR13ES32 Department of Mathematics, Faculty of Sciences of Tunis, University of Tunis El-Manar 2092 El Manar II, Tunisia |
3. | UR ANALYSE NON-LINÉAIRE ET GÉOMETRIE, UR13ES32 ESPRIT School of Engineering. 1, 2 rue André Ampère 2083 - Pôle Technologique, El Ghazala |
We consider in this article a nonlinear vibrating Timoshenko system with thermoelasticity with second sound. We first recall the results obtained in [
References:
[1] |
K. Ammari, A. Bchatnia and K. El Mufti,
Non-uniform decay of the energy of some dissipative evolution systems, Z. Anal. Anwend., 36 (2017), 239-251.
doi: 10.4171/ZAA/1587. |
[2] |
M. A. Ayadi, A. Bchatnia, M. Hamouda and S. Messaoudi,
General decay in a Timoshenko-type system with thermoelasticity with second sound, Adv. Nonlinear Anal., 4 (2015), 263-284.
doi: 10.1515/anona-2015-0038. |
[3] |
A. Bchatnia, S. Chebbi, M. Hamouda and A. Soufyane,
Lower bound and optimality for a nonlinearly damped Timoshenko system with thermoelasticity, Asymptot. Anal., 114 (2019), 73-91.
doi: 10.3233/ASY-191519. |
[4] |
S. Chebbi and M. Hamouda, Discrete energy behavior of a damped Timoshenko system, Comput. Appl. Math., 39 (2020), Paper No. 4, 19 pp.
doi: 10.1007/s40314-019-0982-6. |
[5] |
H. D. Fernández Sare and R. Racke,
On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Ration. Mech. Anal., 194 (2009), 221-251.
doi: 10.1007/s00205-009-0220-2. |
[6] |
Z. Gao and S. Xie,
Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equations, Appl. Numer. Math., 61 (2011), 593-614.
doi: 10.1016/j.apnum.2010.12.004. |
[7] |
A. Guesmia and S. A. Messaoudi,
General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping, Math. Meth. Appl. Sci., 32 (2009), 2102-2122.
doi: 10.1002/mma.1125. |
[8] |
A. Guesmia and and S. A. Messaoudi,
On the control of a viscoelastic damped Timoshenko-type system, Appl. Math. Compt., 206 (2008), 589-597.
doi: 10.1016/j.amc.2008.05.122. |
[9] |
M. S. Ismail and F. Mosally, A fourth order finite difference method for the good Boussinesq equation, Abstr. Appl. Anal., (2014), Art. ID 323260, 10 pp.
doi: 10.1155/2014/323260. |
[10] |
J. U. Kim and Y. Renardy,
Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417-1429.
doi: 10.1137/0325078. |
[11] |
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics. Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. |
[12] |
S. A. Messaoudi and M. I. Mustafa,
On the stabilization of the Timoshenko system by a weak nonlinear dissipation, Math. Meth. Appl. Sci., 32 (2009), 454-469.
doi: 10.1002/mma.1047. |
[13] |
S. A. Messaoudi, M. Pokojovy and B. Said-Houari,
Nonlinear damped Timoshenko systems with second sound–global existence and exponential stability, Math. Meth. Appl. Sci., 32 (2009), 505-534.
doi: 10.1002/mma.1049. |
[14] |
S. A. Messaoudi and A. Soufyane,
Boundary stabilization of solutions of a nonlinear system of Timoshenko type, Nonlinear Anal., 67 (2007), 2107-2121.
doi: 10.1016/j.na.2006.08.039. |
[15] |
J. E. Muñoz Rivera and R. Racke,
Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability, J. Math. Anal. Appl., 276 (2002), 248-278.
doi: 10.1016/S0022-247X(02)00436-5. |
[16] |
B. V. Numerov,
A method of extrapolation of perturbations, Monthly Notices of the Royal Astronomical Society., 84 (1924), 592-601.
doi: 10.1093/mnras/84.8.592. |
[17] |
B. V. Numerov,
Note on the numerical integration of $d^2x/dt^2 = f(x,t)$, Astronomische Nachrichten, 230 (1927), 359-364.
doi: 10.1002/asna.19272301903. |
[18] |
C. A. Raposo, J. A. D. Chuquipoma, J. A. J. Avila and M. L. Santos,
Exponential decay and numerical solution for a Timoshenko system with delay term in the internal feedback, International Journal of Analysis and Applications., 3 (2013), 1-13.
|
[19] |
D. M. Serre, Theory and applications, Translated from the 2001 French original. Graduate Texts in Mathematics., 216. Springer-Verlag, New York, 2002. |
[20] |
A. Soufyane and A. Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping, Electron. J. Differential Equations., (2003), No. 29, 14 pp. |
[21] |
B. Wang, T. Sun and D. Liang,
The conservative and fourth-order compact finite difference schemes for regularized long wave equation, J. Comput. Appl. Math., 356 (2019), 98-117.
doi: 10.1016/j.cam.2019.01.036. |
[22] |
E. Zauderer, Partial Differential Equations of Applied Mathematics, Pure and Applied Mathematics (New York), Wiley-Interscience, John Wiley & Sons, Hoboken, NJ., 2006.
doi: 10.1002/9781118033302. |
show all references
References:
[1] |
K. Ammari, A. Bchatnia and K. El Mufti,
Non-uniform decay of the energy of some dissipative evolution systems, Z. Anal. Anwend., 36 (2017), 239-251.
doi: 10.4171/ZAA/1587. |
[2] |
M. A. Ayadi, A. Bchatnia, M. Hamouda and S. Messaoudi,
General decay in a Timoshenko-type system with thermoelasticity with second sound, Adv. Nonlinear Anal., 4 (2015), 263-284.
doi: 10.1515/anona-2015-0038. |
[3] |
A. Bchatnia, S. Chebbi, M. Hamouda and A. Soufyane,
Lower bound and optimality for a nonlinearly damped Timoshenko system with thermoelasticity, Asymptot. Anal., 114 (2019), 73-91.
doi: 10.3233/ASY-191519. |
[4] |
S. Chebbi and M. Hamouda, Discrete energy behavior of a damped Timoshenko system, Comput. Appl. Math., 39 (2020), Paper No. 4, 19 pp.
doi: 10.1007/s40314-019-0982-6. |
[5] |
H. D. Fernández Sare and R. Racke,
On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Ration. Mech. Anal., 194 (2009), 221-251.
doi: 10.1007/s00205-009-0220-2. |
[6] |
Z. Gao and S. Xie,
Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equations, Appl. Numer. Math., 61 (2011), 593-614.
doi: 10.1016/j.apnum.2010.12.004. |
[7] |
A. Guesmia and S. A. Messaoudi,
General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping, Math. Meth. Appl. Sci., 32 (2009), 2102-2122.
doi: 10.1002/mma.1125. |
[8] |
A. Guesmia and and S. A. Messaoudi,
On the control of a viscoelastic damped Timoshenko-type system, Appl. Math. Compt., 206 (2008), 589-597.
doi: 10.1016/j.amc.2008.05.122. |
[9] |
M. S. Ismail and F. Mosally, A fourth order finite difference method for the good Boussinesq equation, Abstr. Appl. Anal., (2014), Art. ID 323260, 10 pp.
doi: 10.1155/2014/323260. |
[10] |
J. U. Kim and Y. Renardy,
Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417-1429.
doi: 10.1137/0325078. |
[11] |
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics. Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. |
[12] |
S. A. Messaoudi and M. I. Mustafa,
On the stabilization of the Timoshenko system by a weak nonlinear dissipation, Math. Meth. Appl. Sci., 32 (2009), 454-469.
doi: 10.1002/mma.1047. |
[13] |
S. A. Messaoudi, M. Pokojovy and B. Said-Houari,
Nonlinear damped Timoshenko systems with second sound–global existence and exponential stability, Math. Meth. Appl. Sci., 32 (2009), 505-534.
doi: 10.1002/mma.1049. |
[14] |
S. A. Messaoudi and A. Soufyane,
Boundary stabilization of solutions of a nonlinear system of Timoshenko type, Nonlinear Anal., 67 (2007), 2107-2121.
doi: 10.1016/j.na.2006.08.039. |
[15] |
J. E. Muñoz Rivera and R. Racke,
Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability, J. Math. Anal. Appl., 276 (2002), 248-278.
doi: 10.1016/S0022-247X(02)00436-5. |
[16] |
B. V. Numerov,
A method of extrapolation of perturbations, Monthly Notices of the Royal Astronomical Society., 84 (1924), 592-601.
doi: 10.1093/mnras/84.8.592. |
[17] |
B. V. Numerov,
Note on the numerical integration of $d^2x/dt^2 = f(x,t)$, Astronomische Nachrichten, 230 (1927), 359-364.
doi: 10.1002/asna.19272301903. |
[18] |
C. A. Raposo, J. A. D. Chuquipoma, J. A. J. Avila and M. L. Santos,
Exponential decay and numerical solution for a Timoshenko system with delay term in the internal feedback, International Journal of Analysis and Applications., 3 (2013), 1-13.
|
[19] |
D. M. Serre, Theory and applications, Translated from the 2001 French original. Graduate Texts in Mathematics., 216. Springer-Verlag, New York, 2002. |
[20] |
A. Soufyane and A. Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping, Electron. J. Differential Equations., (2003), No. 29, 14 pp. |
[21] |
B. Wang, T. Sun and D. Liang,
The conservative and fourth-order compact finite difference schemes for regularized long wave equation, J. Comput. Appl. Math., 356 (2019), 98-117.
doi: 10.1016/j.cam.2019.01.036. |
[22] |
E. Zauderer, Partial Differential Equations of Applied Mathematics, Pure and Applied Mathematics (New York), Wiley-Interscience, John Wiley & Sons, Hoboken, NJ., 2006.
doi: 10.1002/9781118033302. |
[1] |
Belkacem Said-Houari, Radouane Rahali. Asymptotic behavior of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of type III. Evolution Equations and Control Theory, 2013, 2 (2) : 423-440. doi: 10.3934/eect.2013.2.423 |
[2] |
Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 343-362. doi: 10.3934/dcdss.2016.9.343 |
[3] |
Qingguang Guan, Max Gunzburger. Stability and convergence of time-stepping methods for a nonlocal model for diffusion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1315-1335. doi: 10.3934/dcdsb.2015.20.1315 |
[4] |
Jitraj Saha, Nilima Das, Jitendra Kumar, Andreas Bück. Numerical solutions for multidimensional fragmentation problems using finite volume methods. Kinetic and Related Models, 2019, 12 (1) : 79-103. doi: 10.3934/krm.2019004 |
[5] |
Houda Hani, Moez Khenissi. Asymptotic behaviors of solutions for finite difference analogue of the Chipot-Weissler equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1421-1445. doi: 10.3934/dcdss.2016057 |
[6] |
Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269 |
[7] |
Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561 |
[8] |
Toufik Bentrcia, Abdelaziz Mennouni. On the asymptotic stability of a Bresse system with two fractional damping terms: Theoretical and numerical analysis. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022090 |
[9] |
Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779 |
[10] |
Yongqin Liu, Shuichi Kawashima. Asymptotic behavior of solutions to a model system of a radiating gas. Communications on Pure and Applied Analysis, 2011, 10 (1) : 209-223. doi: 10.3934/cpaa.2011.10.209 |
[11] |
Zhong Tan, Leilei Tong. Asymptotic stability of stationary solutions for magnetohydrodynamic equations. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3435-3465. doi: 10.3934/dcds.2017146 |
[12] |
Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551 |
[13] |
Jaime E. Muñoz Rivera, Maria Grazia Naso. About the stability to Timoshenko system with pointwise dissipation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2289-2303. doi: 10.3934/dcdss.2022078 |
[14] |
Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅱ): Sharp asymptotic rates of convergence in relative error by entropy methods. Kinetic and Related Models, 2017, 10 (1) : 61-91. doi: 10.3934/krm.2017003 |
[15] |
Jeffrey R. Haack, Cory D. Hauck. Oscillatory behavior of Asymptotic-Preserving splitting methods for a linear model of diffusive relaxation. Kinetic and Related Models, 2008, 1 (4) : 573-590. doi: 10.3934/krm.2008.1.573 |
[16] |
Per Christian Moan, Jitse Niesen. On an asymptotic method for computing the modified energy for symplectic methods. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1105-1120. doi: 10.3934/dcds.2014.34.1105 |
[17] |
Kersten Schmidt, Ralf Hiptmair. Asymptotic boundary element methods for thin conducting sheets. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 619-647. doi: 10.3934/dcdss.2015.8.619 |
[18] |
Ramon Quintanilla, Reinhard Racke. Stability in thermoelasticity of type III. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 383-400. doi: 10.3934/dcdsb.2003.3.383 |
[19] |
Xiaohai Wan, Zhilin Li. Some new finite difference methods for Helmholtz equations on irregular domains or with interfaces. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1155-1174. doi: 10.3934/dcdsb.2012.17.1155 |
[20] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]