
-
Previous Article
Global attractor for damped forced nonlinear logarithmic Schrödinger equations
- DCDS-S Home
- This Issue
-
Next Article
Representation and approximation of the polar factor of an operator on a Hilbert space
Shape optimization method for an inverse geometric source problem and stability at critical shape
Laboratory of Mathematics and Applications (LMA), Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco |
This work deals with a geometric inverse source problem. It consists in recovering inclusion in a fixed domain based on boundary measurements. The inverse problem is solved via a shape optimization formulation. Two cost functions are investigated, namely, the least squares fitting, and the Kohn-Vogelius function. In this case, the existence of the shape derivative is given via the first order material derivative of the state problems. Furthermore, using the adjoint approach, the shape gradient of both cost functions is characterized. Then, the stability is investigated by proving the compactness of the Hessian at the critical shape for both considered cases. Finally, based on the gradient method, a steepest descent algorithm is developed, and some numerical experiments for non-parametric shapes are discussed.
References:
[1] |
B. Abdelaziz, A. El Badia and A. El Hajj,
Direct algorithm for multipolar sources reconstruction, J. Math. Anal. Appl., 428 (2015), 306-336.
doi: 10.1016/j.jmaa.2015.03.013. |
[2] |
L. Afraites, M. Dambrine, K. Eppler and D. Kateb,
Detecting perfectly insulated obstacles by shape optimization techniques of order two, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 389-416.
doi: 10.3934/dcdsb.2007.8.389. |
[3] |
L. Afraites, M. Dambrine and D. Kateb,
Shape methods for the transmission problem with a single measurement, Numer. Funct. Anal. Optim., 28 (2007), 519-551.
doi: 10.1080/01630560701381005. |
[4] |
L. Afraites, M. Dambrine and D. Kateb,
On second order shape optimization methods for electrical impedance tomography, SIAM J. Control Optim., 47 (2008), 1556-1590.
doi: 10.1137/070687438. |
[5] |
C. J. S. Alves, M. J. Colaco, V. M. A. Leitão, N. F. M. Martins, H. R. B. Orlande and N. C. Roberty,
Recovering the source term in a linear diffusion problem by the method of fundamental solutions, Inverse Probl. Sci. Eng., 16 (2008), 1005-1021.
doi: 10.1080/17415970802083243. |
[6] |
C. J. S. Alves, R. Mamud, N. F. M. Martins and N. C. Roberty, On inverse problems for characteristic sources in Helmholtz equations, Math. Probl. Eng., 2017 (2017), Art. ID 2472060, 16 pp.
doi: 10.1155/2017/2472060. |
[7] |
H. Azegami and K. Takeuchi,
A smoothing method for shape optimization: Traction method using the Robin condition, Int. J. Comput. Methods, 3 (2006), 21-33.
doi: 10.1142/S0219876206000709. |
[8] |
M. Badra, F. Caubet and M. Dambrine,
Detecting an obstacle immersed in a fluid by shape optimization methods, Math. Models Methods Appl. Sci., 21 (2011), 2069-2101.
doi: 10.1142/S0218202511005660. |
[9] |
F. Ben Belgacem and F. Jelassi, Identifiability of surface sources from Cauchy data, Inverse Probl., 25 (2009), 075007, 14 pp.
doi: 10.1088/0266-5611/25/7/075007. |
[10] |
K. A. Berdawood, A. Nachaoui, R. Saeed, M. Nachaoui and F. Aboud, An aternating procedure with dynamic relaxation for Cauchy problems governed by the modified Helmholtz equation, Advanced Mathematical Models & Applications, 5 (2020), 131-139. Google Scholar |
[11] |
B. Bin-Mohsin and D. Lesnic,
Reconstruction of a source domain from boundary measurements, Applied Mathematical Modelling, 45 (2017), 925-939.
doi: 10.1016/j.apm.2017.01.021. |
[12] |
F. Caubet,
Instability of an inverse problem for the stationary Navier–Stokes equations, SIAM J. Control Optim., 51 (2013), 2949-2975.
doi: 10.1137/110836857. |
[13] |
F. Caubet, M. Dambrine and D. Kateb, Shape optimization methods for the inverse obstacle problem with generalized impedance boundary conditions, Inverse Problems, 29 (2013), 115011 (26pp).
doi: 10.1088/0266-5611/29/11/115011. |
[14] |
F. Caubet, M. Dambrine, D. Kateb and C. Z. Timimoun,
A Kohn–Vogelius formulation to detect an obstacle immersed in a fluid, Inverse Probl. Imaging, 7 (2013), 123-157.
doi: 10.3934/ipi.2013.7.123. |
[15] |
A. Chakib, A. Ellabib, A. Nachaoui and M. Nachaoui,
A shape optimization formulation of weld pool determination, Appl. Math. Lett., 25 (2012), 374-379.
doi: 10.1016/j.aml.2011.09.017. |
[16] |
M. Cheney, D. Isaacson and J. C. Newell,
Electrical impedance tomography, SIAM Review, 41 (1999), 85-101.
doi: 10.1137/S0036144598333613. |
[17] |
M. Delfour and J. P. Zolesio, Shapes and Geometries: Analysis, Differential Calculus, and Optimization, SIAM, Philadelphia, USA, 2001. |
[18] |
A. El Badia and T. Ha Duong,
Some remarks on the problem of source identification from boundary measurements, Inverse Probl., 14 (1998), 883-891.
doi: 10.1088/0266-5611/14/4/008. |
[19] |
A. El Badia and T. Nara, An inverse source problem for Helmholtz's equation from the Cauchy data with a single wave number, Inverse Problems, 27 (2011), 105001.
doi: 10.1088/0266-5611/27/10/105001. |
[20] |
K. Eppler and H. Harbrecht,
A regularized Newton method in electrical impedance tomography using shape Hessian information, Control and Cybernetics, 34 (2005), 203-225.
|
[21] |
R. Fiorenza, H$\ddot{o}$lder and Locally H$\ddot{o}$lder Continuous Functions, and Open Sets of Class ${{C}^{\hat{\ }}}k,{{C}^{\hat{\ }}}\{k,lambda\} $, Birkh$\ddot{a}$user, 2017.
doi: 10.1007/978-3-319-47940-8. |
[22] |
M. Giacomini, O. Pantz and K. Trabelsi,
Certified descent algorithm for shape optimization driven by fully–computable a posteriori error estimators, ESAIM Control Optimisation and Calculus of Variations, 23 (2017), 977-1001.
doi: 10.1051/cocv/2016021. |
[23] |
J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Differential Equations, Yale University Press, New Haven, 1923.
![]() |
[24] |
M. H$\ddot{a}$m$\ddot{a}$l$\ddot{a}$inen, R. Hari, R. J. Ilmoniemi, J. Knuutila and O. V. Lounasmaa, Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain, Reviews of Modern Physics, 65 (1993), 413-497. Google Scholar |
[25] |
F. Hecht, Finite Element Library Freefem++, Available from: http://www.freefem.org/ff++/. Google Scholar |
[26] |
A. Henrot and M. Pierre, Variation et Optimisation de Formes, volume 48 of Mathématiques & Applications (Berlin)[Mathematics & Applications], Springer, Berlin, 2005.
doi: 10.1007/3-540-37689-5. |
[27] |
F. Hettlich and W. Rundell,
Iterative methods for the reconstruction of an inverse potential problem, Inverse Problems, 12 (1996), 251-266.
doi: 10.1088/0266-5611/12/3/006. |
[28] |
F. Hettlich and W. Rundell,
Identification of a discontinuity source in the heat equation, Inverse Problems, 17 (2001), 1465-1482.
doi: 10.1088/0266-5611/17/5/315. |
[29] |
Y. C. Hon, M. Li and Y. A. Melnikov,
Inverse source identification by Green's function, Eng. Anal. Bound. Elem., 34 (2010), 352-358.
doi: 10.1016/j.enganabound.2009.09.009. |
[30] |
M. Hrizi and M. Hassine,
One–iteration reconstruction algorithm for geometric inverse source problem, Journal of Elliptic and Parabolic Equations, 4 (2018), 177-205.
doi: 10.1007/s41808-018-0015-4. |
[31] |
V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, Vol. 127, Springer–Verlag, New York, 1998.
doi: 10.1007/978-1-4899-0030-2. |
[32] |
R. Kress and W. Rundell,
A nonlinear integral equation and an iterative algorithm for an inverse source problem, Journal of Integral Equations and Applications, 27 (2015), 179-197.
doi: 10.1216/JIE-2015-27-2-179. |
[33] |
V. Maz'ya and T. Shaposhnikova, Theory of Multipliers in Spaces of Differentiable Functions, volume 23 of Monographs and Studies in Mathematics. Pitman, Advanced Publishing Program, Boston, MA, 1985. |
[34] |
V. Michel and A. S. Fokas,
A unified approach to various techniques for the non-uniqueness of the inverse gravimetric problem and wavelet-based methods, Inverse Probl., 24 (2008), 1-25.
doi: 10.1088/0266-5611/24/4/045019. |
[35] |
F. Murat and J. Simon, Sur le Contrôle par un Domaine Géométrique, Rapport du L.A. 189, Université de Paris VI, 1976. Google Scholar |
[36] |
M. Nachaoui, A. Chakib and A. Nachaoui, An efficient evolutionary algorithm for a shape optimization problem, Appl. Comput. Math., 19 (2020), 220-244. Google Scholar |
[37] |
A. Nachaoui, M. Nachaoui, A. Chakib and M. A. Hilal, Some novel numerical techniques for an inverse Cauchy problem, Journal of Computational and Applied Mathematics, (2020), 113030.
doi: 10.1016/j.cam.2020.113030. |
[38] |
P. Novikov, Sur le probleme inverse du potentiel, Dokl. Akad. Nauk., 18 (1938), 165-168. Google Scholar |
[39] |
N. C. Roberty and C. J. Alves,
On the identification of star–shape sources from boundary measurements using a reciprocity functional, Inverse Problems in Science and Engineering, 17 (2009), 187-202.
doi: 10.1080/17415970802082799. |
[40] |
J. R. Roche and J. Sokolowski,
Numerical methods for shape identification problems, Control and Cybernetics, 25 (1996), 867-894.
|
[41] |
J. J. Simon,
Differentiation with respect to the domain in boundary value problems, Numer. Funct. Anal. Optim., 2 (1980), 649-687.
doi: 10.1080/01630563.1980.10120631. |
[42] |
J. Simon,
Second variations for domain optimization problems, Control Theory of Distributed Parameter Systems and Applications, 91 (1989), 361-378.
|
show all references
References:
[1] |
B. Abdelaziz, A. El Badia and A. El Hajj,
Direct algorithm for multipolar sources reconstruction, J. Math. Anal. Appl., 428 (2015), 306-336.
doi: 10.1016/j.jmaa.2015.03.013. |
[2] |
L. Afraites, M. Dambrine, K. Eppler and D. Kateb,
Detecting perfectly insulated obstacles by shape optimization techniques of order two, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 389-416.
doi: 10.3934/dcdsb.2007.8.389. |
[3] |
L. Afraites, M. Dambrine and D. Kateb,
Shape methods for the transmission problem with a single measurement, Numer. Funct. Anal. Optim., 28 (2007), 519-551.
doi: 10.1080/01630560701381005. |
[4] |
L. Afraites, M. Dambrine and D. Kateb,
On second order shape optimization methods for electrical impedance tomography, SIAM J. Control Optim., 47 (2008), 1556-1590.
doi: 10.1137/070687438. |
[5] |
C. J. S. Alves, M. J. Colaco, V. M. A. Leitão, N. F. M. Martins, H. R. B. Orlande and N. C. Roberty,
Recovering the source term in a linear diffusion problem by the method of fundamental solutions, Inverse Probl. Sci. Eng., 16 (2008), 1005-1021.
doi: 10.1080/17415970802083243. |
[6] |
C. J. S. Alves, R. Mamud, N. F. M. Martins and N. C. Roberty, On inverse problems for characteristic sources in Helmholtz equations, Math. Probl. Eng., 2017 (2017), Art. ID 2472060, 16 pp.
doi: 10.1155/2017/2472060. |
[7] |
H. Azegami and K. Takeuchi,
A smoothing method for shape optimization: Traction method using the Robin condition, Int. J. Comput. Methods, 3 (2006), 21-33.
doi: 10.1142/S0219876206000709. |
[8] |
M. Badra, F. Caubet and M. Dambrine,
Detecting an obstacle immersed in a fluid by shape optimization methods, Math. Models Methods Appl. Sci., 21 (2011), 2069-2101.
doi: 10.1142/S0218202511005660. |
[9] |
F. Ben Belgacem and F. Jelassi, Identifiability of surface sources from Cauchy data, Inverse Probl., 25 (2009), 075007, 14 pp.
doi: 10.1088/0266-5611/25/7/075007. |
[10] |
K. A. Berdawood, A. Nachaoui, R. Saeed, M. Nachaoui and F. Aboud, An aternating procedure with dynamic relaxation for Cauchy problems governed by the modified Helmholtz equation, Advanced Mathematical Models & Applications, 5 (2020), 131-139. Google Scholar |
[11] |
B. Bin-Mohsin and D. Lesnic,
Reconstruction of a source domain from boundary measurements, Applied Mathematical Modelling, 45 (2017), 925-939.
doi: 10.1016/j.apm.2017.01.021. |
[12] |
F. Caubet,
Instability of an inverse problem for the stationary Navier–Stokes equations, SIAM J. Control Optim., 51 (2013), 2949-2975.
doi: 10.1137/110836857. |
[13] |
F. Caubet, M. Dambrine and D. Kateb, Shape optimization methods for the inverse obstacle problem with generalized impedance boundary conditions, Inverse Problems, 29 (2013), 115011 (26pp).
doi: 10.1088/0266-5611/29/11/115011. |
[14] |
F. Caubet, M. Dambrine, D. Kateb and C. Z. Timimoun,
A Kohn–Vogelius formulation to detect an obstacle immersed in a fluid, Inverse Probl. Imaging, 7 (2013), 123-157.
doi: 10.3934/ipi.2013.7.123. |
[15] |
A. Chakib, A. Ellabib, A. Nachaoui and M. Nachaoui,
A shape optimization formulation of weld pool determination, Appl. Math. Lett., 25 (2012), 374-379.
doi: 10.1016/j.aml.2011.09.017. |
[16] |
M. Cheney, D. Isaacson and J. C. Newell,
Electrical impedance tomography, SIAM Review, 41 (1999), 85-101.
doi: 10.1137/S0036144598333613. |
[17] |
M. Delfour and J. P. Zolesio, Shapes and Geometries: Analysis, Differential Calculus, and Optimization, SIAM, Philadelphia, USA, 2001. |
[18] |
A. El Badia and T. Ha Duong,
Some remarks on the problem of source identification from boundary measurements, Inverse Probl., 14 (1998), 883-891.
doi: 10.1088/0266-5611/14/4/008. |
[19] |
A. El Badia and T. Nara, An inverse source problem for Helmholtz's equation from the Cauchy data with a single wave number, Inverse Problems, 27 (2011), 105001.
doi: 10.1088/0266-5611/27/10/105001. |
[20] |
K. Eppler and H. Harbrecht,
A regularized Newton method in electrical impedance tomography using shape Hessian information, Control and Cybernetics, 34 (2005), 203-225.
|
[21] |
R. Fiorenza, H$\ddot{o}$lder and Locally H$\ddot{o}$lder Continuous Functions, and Open Sets of Class ${{C}^{\hat{\ }}}k,{{C}^{\hat{\ }}}\{k,lambda\} $, Birkh$\ddot{a}$user, 2017.
doi: 10.1007/978-3-319-47940-8. |
[22] |
M. Giacomini, O. Pantz and K. Trabelsi,
Certified descent algorithm for shape optimization driven by fully–computable a posteriori error estimators, ESAIM Control Optimisation and Calculus of Variations, 23 (2017), 977-1001.
doi: 10.1051/cocv/2016021. |
[23] |
J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Differential Equations, Yale University Press, New Haven, 1923.
![]() |
[24] |
M. H$\ddot{a}$m$\ddot{a}$l$\ddot{a}$inen, R. Hari, R. J. Ilmoniemi, J. Knuutila and O. V. Lounasmaa, Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain, Reviews of Modern Physics, 65 (1993), 413-497. Google Scholar |
[25] |
F. Hecht, Finite Element Library Freefem++, Available from: http://www.freefem.org/ff++/. Google Scholar |
[26] |
A. Henrot and M. Pierre, Variation et Optimisation de Formes, volume 48 of Mathématiques & Applications (Berlin)[Mathematics & Applications], Springer, Berlin, 2005.
doi: 10.1007/3-540-37689-5. |
[27] |
F. Hettlich and W. Rundell,
Iterative methods for the reconstruction of an inverse potential problem, Inverse Problems, 12 (1996), 251-266.
doi: 10.1088/0266-5611/12/3/006. |
[28] |
F. Hettlich and W. Rundell,
Identification of a discontinuity source in the heat equation, Inverse Problems, 17 (2001), 1465-1482.
doi: 10.1088/0266-5611/17/5/315. |
[29] |
Y. C. Hon, M. Li and Y. A. Melnikov,
Inverse source identification by Green's function, Eng. Anal. Bound. Elem., 34 (2010), 352-358.
doi: 10.1016/j.enganabound.2009.09.009. |
[30] |
M. Hrizi and M. Hassine,
One–iteration reconstruction algorithm for geometric inverse source problem, Journal of Elliptic and Parabolic Equations, 4 (2018), 177-205.
doi: 10.1007/s41808-018-0015-4. |
[31] |
V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, Vol. 127, Springer–Verlag, New York, 1998.
doi: 10.1007/978-1-4899-0030-2. |
[32] |
R. Kress and W. Rundell,
A nonlinear integral equation and an iterative algorithm for an inverse source problem, Journal of Integral Equations and Applications, 27 (2015), 179-197.
doi: 10.1216/JIE-2015-27-2-179. |
[33] |
V. Maz'ya and T. Shaposhnikova, Theory of Multipliers in Spaces of Differentiable Functions, volume 23 of Monographs and Studies in Mathematics. Pitman, Advanced Publishing Program, Boston, MA, 1985. |
[34] |
V. Michel and A. S. Fokas,
A unified approach to various techniques for the non-uniqueness of the inverse gravimetric problem and wavelet-based methods, Inverse Probl., 24 (2008), 1-25.
doi: 10.1088/0266-5611/24/4/045019. |
[35] |
F. Murat and J. Simon, Sur le Contrôle par un Domaine Géométrique, Rapport du L.A. 189, Université de Paris VI, 1976. Google Scholar |
[36] |
M. Nachaoui, A. Chakib and A. Nachaoui, An efficient evolutionary algorithm for a shape optimization problem, Appl. Comput. Math., 19 (2020), 220-244. Google Scholar |
[37] |
A. Nachaoui, M. Nachaoui, A. Chakib and M. A. Hilal, Some novel numerical techniques for an inverse Cauchy problem, Journal of Computational and Applied Mathematics, (2020), 113030.
doi: 10.1016/j.cam.2020.113030. |
[38] |
P. Novikov, Sur le probleme inverse du potentiel, Dokl. Akad. Nauk., 18 (1938), 165-168. Google Scholar |
[39] |
N. C. Roberty and C. J. Alves,
On the identification of star–shape sources from boundary measurements using a reciprocity functional, Inverse Problems in Science and Engineering, 17 (2009), 187-202.
doi: 10.1080/17415970802082799. |
[40] |
J. R. Roche and J. Sokolowski,
Numerical methods for shape identification problems, Control and Cybernetics, 25 (1996), 867-894.
|
[41] |
J. J. Simon,
Differentiation with respect to the domain in boundary value problems, Numer. Funct. Anal. Optim., 2 (1980), 649-687.
doi: 10.1080/01630563.1980.10120631. |
[42] |
J. Simon,
Second variations for domain optimization problems, Control Theory of Distributed Parameter Systems and Applications, 91 (1989), 361-378.
|











[1] |
Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021017 |
[2] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[3] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[4] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[5] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[6] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[7] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[8] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[9] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[10] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[11] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[12] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[13] |
Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021039 |
[14] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[15] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[16] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[17] |
Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021008 |
[18] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[19] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[20] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]