-
Previous Article
Numerical treatment of Gray-Scott model with operator splitting method
- DCDS-S Home
- This Issue
-
Next Article
On the convergence to equilibria of a sequence defined by an implicit scheme
Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero
School of Mathematical Sciences, Capital Normal University, Beijing 100048, China |
In this paper we obtain the existence of nontrivial solutions for the fractional Laplacian equations with the nonlinearity may fail to have asymptotic limits at zero and at infinity. We make use of a combination of homotopy invariance of critical groups and the topological version of linking methods.
References:
[1] |
A. Ambrosetti and P. H. Rabinowitz,
Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.
doi: 10.1016/0022-1236(73)90051-7. |
[2] |
M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners, Springer, Berlin, 2011.
doi: 10.1007/978-0-85729-227-8. |
[3] |
B. Barrios, E. Colorado, A. de Pablo and U. Sánchez,
On some critical problems for the fractional Laplacian operator, J. Differential Equations, 252 (2012), 6133-6162.
doi: 10.1016/j.jde.2012.02.023. |
[4] |
T. Bartsch and S. Li,
Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, Nonlinear Anal., 28 (1997), 419-441.
doi: 10.1016/0362-546X(95)00167-T. |
[5] |
K.-C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser-Bosten, 1993.
doi: 10.1007/978-1-4612-0385-8. |
[6] |
Y. Chen and J. Su,
Resonant problems for fractional Laplacian, Commun. Pure Appl. Anal., 16 (2017), 163-187.
doi: 10.3934/cpaa.2017008. |
[7] |
Y. Chen and J. Su,
Multiple solutions for the fractional Laplacian problems with different asymptotic limits near infinity, Appl. Math. Lett., 76 (2018), 60-65.
doi: 10.1016/j.aml.2017.07.012. |
[8] |
Y. Chen and J. Su, Bounded resonant problems driven by fractional Laplacian, Topol. Methods Nonlinear Anal., to appear. Google Scholar |
[9] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[10] |
M. M. Fall and V. Felli,
Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Comm. Partial Differential Equations, 39 (2014), 354-397.
doi: 10.1080/03605302.2013.825918. |
[11] |
A. Fiscella,
Saddle point solutions for nonlocal elliptic operators, Topol. Methods Nonlinear Anal., 44 (2014), 527-538.
doi: 10.12775/TMNA.2014.059. |
[12] |
A. Fiscella, R. Servadei and E. Valdinoci,
A resonance problem for non-local elliptic operators, Z. Anal. Anwend., 32 (2013), 411-431.
doi: 10.4171/ZAA/1492. |
[13] |
A. Fiscella, R. Servadei and E. Valdinoci,
Asymptotically linear problems driven by fractional Laplacian operators, Math. Methods Appl. Sci., 38 (2015), 3551-3563.
doi: 10.1002/mma.3438. |
[14] |
A. Iannizzotto and N. S. Papageorgiou,
Existence and multiplicity results for resonant fractional boundary value problems, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 511-532.
doi: 10.3934/dcdss.2018028. |
[15] |
S. Li, K. Perera and J. Su,
Computations of critical groups in elliptic boundary value problems where the asymptotic limits may not exist, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 721-732.
doi: 10.1017/S0308210501000324. |
[16] |
J. Liu,
The Morse index for a saddle point, Syst. Sci. Math. Sci., 2 (1989), 32-39.
|
[17] |
J. Liu and S. Li,
An existence theorem for multiple critical points and its application, Kexue Tongbao, 17 (1984), 1025-1027.
|
[18] |
J. Liu and J. Su,
Remarks on multiple nontrivial solutions for quasi-linear resonant problems, J. Math. Anal. Appl., 258 (2001), 209-222.
doi: 10.1006/jmaa.2000.7374. |
[19] |
J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, Berlin, 1989.
doi: 10.1007/978-1-4757-2061-7. |
[20] |
G. Molica Bisci, V. D. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, 162. Cambridge University Press, Cambridge, 2016. With a foreword by Jean Mawhin.
doi: 10.1017/CBO9781316282397. |
[21] |
G. Molica Bisci and R. Servadei,
A Brezis-Nirenberg splitting approach for nonlocal fractional equations, Nonlinear Anal., 119 (2015), 341-353.
doi: 10.1016/j.na.2014.10.025. |
[22] |
D. Mugnai and D. Pagliardini,
Existence and multiplicity results for the fractional Laplacian in bounded domains, Adv. Calc. Var., 10 (2017), 111-124.
doi: 10.1515/acv-2015-0032. |
[23] |
K. Perera and M. Schechter,
Solution of nonlinear equations having asymptotic limits at zero and infinity, Calc. Var. Partial Differential Equations, 12 (2001), 359-369.
doi: 10.1007/PL00009917. |
[24] |
P. H. Rabinowitz, Minimax Methods in Critical Point Theory With Application to Differential Equations, CBMS, Vol. 65 AMS: Providence 1986.
doi: 10.1090/cbms/065. |
[25] |
R. Servadei,
A critical fractional Laplace equation in the resonant case, Topol. Methods Nonlinear Anal., 43 (2014), 251-267.
doi: 10.12775/TMNA.2014.015. |
[26] |
R. Servadei and E. Valdinoci,
Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.
doi: 10.1016/j.jmaa.2011.12.032. |
[27] |
R. Servadei and E. Valdinoci,
Variational methods for non-local operators of elliptic type., Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.
doi: 10.3934/dcds.2013.33.2105. |
[28] |
R. Servadei and E. Valdinoci,
A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12 (2013), 2445-2464.
doi: 10.3934/cpaa.2013.12.2445. |
[29] |
R. Servadei and E. Valdinoci,
Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133-154.
doi: 10.5565/PUBLMAT_58114_06. |
[30] |
R. Servadei and E. Valdinoci,
The Brezis-Nirenberg result for the fractional Laplacian,, Trans. Amer. Math. Soc., 367 (2015), 67-102.
doi: 10.1090/S0002-9947-2014-05884-4. |
[31] |
L. Silvestre,
Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.
doi: 10.1002/cpa.20153. |
[32] |
J. Su,
Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues,, Nonlinear Anal., 48 (2002), 881-895.
doi: 10.1016/S0362-546X(00)00221-2. |
[33] |
J. Su,
Multiple results for asymptotically linear elliptic problems at resonance, J. Math. Anal. Appl., 278 (2003), 397-408.
doi: 10.1016/S0022-247X(02)00707-2. |
[34] |
Z.-Q. Wang,
Multiple solutions for indefinite functionals and applications to asymptotically linear problems, Acta. Math. Sinica(N.S.), 5 (1989), 101-113.
doi: 10.1007/BF02107664. |
show all references
References:
[1] |
A. Ambrosetti and P. H. Rabinowitz,
Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.
doi: 10.1016/0022-1236(73)90051-7. |
[2] |
M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners, Springer, Berlin, 2011.
doi: 10.1007/978-0-85729-227-8. |
[3] |
B. Barrios, E. Colorado, A. de Pablo and U. Sánchez,
On some critical problems for the fractional Laplacian operator, J. Differential Equations, 252 (2012), 6133-6162.
doi: 10.1016/j.jde.2012.02.023. |
[4] |
T. Bartsch and S. Li,
Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, Nonlinear Anal., 28 (1997), 419-441.
doi: 10.1016/0362-546X(95)00167-T. |
[5] |
K.-C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser-Bosten, 1993.
doi: 10.1007/978-1-4612-0385-8. |
[6] |
Y. Chen and J. Su,
Resonant problems for fractional Laplacian, Commun. Pure Appl. Anal., 16 (2017), 163-187.
doi: 10.3934/cpaa.2017008. |
[7] |
Y. Chen and J. Su,
Multiple solutions for the fractional Laplacian problems with different asymptotic limits near infinity, Appl. Math. Lett., 76 (2018), 60-65.
doi: 10.1016/j.aml.2017.07.012. |
[8] |
Y. Chen and J. Su, Bounded resonant problems driven by fractional Laplacian, Topol. Methods Nonlinear Anal., to appear. Google Scholar |
[9] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[10] |
M. M. Fall and V. Felli,
Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Comm. Partial Differential Equations, 39 (2014), 354-397.
doi: 10.1080/03605302.2013.825918. |
[11] |
A. Fiscella,
Saddle point solutions for nonlocal elliptic operators, Topol. Methods Nonlinear Anal., 44 (2014), 527-538.
doi: 10.12775/TMNA.2014.059. |
[12] |
A. Fiscella, R. Servadei and E. Valdinoci,
A resonance problem for non-local elliptic operators, Z. Anal. Anwend., 32 (2013), 411-431.
doi: 10.4171/ZAA/1492. |
[13] |
A. Fiscella, R. Servadei and E. Valdinoci,
Asymptotically linear problems driven by fractional Laplacian operators, Math. Methods Appl. Sci., 38 (2015), 3551-3563.
doi: 10.1002/mma.3438. |
[14] |
A. Iannizzotto and N. S. Papageorgiou,
Existence and multiplicity results for resonant fractional boundary value problems, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 511-532.
doi: 10.3934/dcdss.2018028. |
[15] |
S. Li, K. Perera and J. Su,
Computations of critical groups in elliptic boundary value problems where the asymptotic limits may not exist, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 721-732.
doi: 10.1017/S0308210501000324. |
[16] |
J. Liu,
The Morse index for a saddle point, Syst. Sci. Math. Sci., 2 (1989), 32-39.
|
[17] |
J. Liu and S. Li,
An existence theorem for multiple critical points and its application, Kexue Tongbao, 17 (1984), 1025-1027.
|
[18] |
J. Liu and J. Su,
Remarks on multiple nontrivial solutions for quasi-linear resonant problems, J. Math. Anal. Appl., 258 (2001), 209-222.
doi: 10.1006/jmaa.2000.7374. |
[19] |
J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, Berlin, 1989.
doi: 10.1007/978-1-4757-2061-7. |
[20] |
G. Molica Bisci, V. D. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, 162. Cambridge University Press, Cambridge, 2016. With a foreword by Jean Mawhin.
doi: 10.1017/CBO9781316282397. |
[21] |
G. Molica Bisci and R. Servadei,
A Brezis-Nirenberg splitting approach for nonlocal fractional equations, Nonlinear Anal., 119 (2015), 341-353.
doi: 10.1016/j.na.2014.10.025. |
[22] |
D. Mugnai and D. Pagliardini,
Existence and multiplicity results for the fractional Laplacian in bounded domains, Adv. Calc. Var., 10 (2017), 111-124.
doi: 10.1515/acv-2015-0032. |
[23] |
K. Perera and M. Schechter,
Solution of nonlinear equations having asymptotic limits at zero and infinity, Calc. Var. Partial Differential Equations, 12 (2001), 359-369.
doi: 10.1007/PL00009917. |
[24] |
P. H. Rabinowitz, Minimax Methods in Critical Point Theory With Application to Differential Equations, CBMS, Vol. 65 AMS: Providence 1986.
doi: 10.1090/cbms/065. |
[25] |
R. Servadei,
A critical fractional Laplace equation in the resonant case, Topol. Methods Nonlinear Anal., 43 (2014), 251-267.
doi: 10.12775/TMNA.2014.015. |
[26] |
R. Servadei and E. Valdinoci,
Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.
doi: 10.1016/j.jmaa.2011.12.032. |
[27] |
R. Servadei and E. Valdinoci,
Variational methods for non-local operators of elliptic type., Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.
doi: 10.3934/dcds.2013.33.2105. |
[28] |
R. Servadei and E. Valdinoci,
A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12 (2013), 2445-2464.
doi: 10.3934/cpaa.2013.12.2445. |
[29] |
R. Servadei and E. Valdinoci,
Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133-154.
doi: 10.5565/PUBLMAT_58114_06. |
[30] |
R. Servadei and E. Valdinoci,
The Brezis-Nirenberg result for the fractional Laplacian,, Trans. Amer. Math. Soc., 367 (2015), 67-102.
doi: 10.1090/S0002-9947-2014-05884-4. |
[31] |
L. Silvestre,
Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.
doi: 10.1002/cpa.20153. |
[32] |
J. Su,
Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues,, Nonlinear Anal., 48 (2002), 881-895.
doi: 10.1016/S0362-546X(00)00221-2. |
[33] |
J. Su,
Multiple results for asymptotically linear elliptic problems at resonance, J. Math. Anal. Appl., 278 (2003), 397-408.
doi: 10.1016/S0022-247X(02)00707-2. |
[34] |
Z.-Q. Wang,
Multiple solutions for indefinite functionals and applications to asymptotically linear problems, Acta. Math. Sinica(N.S.), 5 (1989), 101-113.
doi: 10.1007/BF02107664. |
[1] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[2] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[3] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[4] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[5] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[6] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[7] |
Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053 |
[8] |
Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391 |
[9] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[10] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[11] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[12] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[13] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[14] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[15] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]