    • Previous Article
The Orlicz Minkowski problem involving $0 < p < 1$: From one constant to an infinite interval
• DCDS-S Home
• This Issue
• Next Article
Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms
June  2021, 14(6): 1967-1981. doi: 10.3934/dcdss.2021008

## Solutions to Chern-Simons-Schrödinger systems with external potential

 1 Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China 2 School of Sciences, Nanchang Institute of Technology, Nanchang 330099, China

* Corresponding author: Jianfu Yang

Received  August 2020 Revised  November 2020 Published  June 2021 Early access  January 2021

In this paper, we consider the existence of static solutions to the nonlinear Chern-Simons-Schrödinger system
 $\begin{equation} \left\{\begin{array}{ll} -iD_0\Psi-(D_1D_1+D_2D_2)\Psi+V\Psi = |\Psi|^{p-2}\Psi,\\ \partial_0A_1-\partial_1A_0 = -\frac 12i\lambda[\overline{\Psi}D_2\Psi-\Psi\overline{D_2\Psi}],\\ \partial_0A_2-\partial_2A_0 = \frac 12i\lambda[\overline{\Psi}D_1\Psi-\Psi\overline{D_1\Psi}],\\ \partial_1A_2-\partial_2A_1 = -\frac12\lambda|\Psi|^2.\\ \end{array} \right. \end{equation}$
with an external potential
 $V(x)$
, where
 $D_{0} = \partial_{t}+i\lambda A_{0}$
and
 $D_{k} = \partial_{x_k}-i\lambda A_{k}, \, k = 1,2,$
for
 $(x_1,x_2,t)\in \mathbb{R}^{2,1}$
are covariant derivatives,
 $\lambda$
is the coupling number. Suppose that
 $V(x)$
satisfies
 $\lim_{|x|\to\infty}V(x) = +\infty$
, we show for
 $2 that there exists $ \lambda^*>0 $such that if $ 0<\lambda<\lambda^* $, problem (1) has two nontrivial static solutions $ (\Psi_\lambda, A_0^\lambda, A_1^\lambda,A_2^\lambda) $. Moreover, there also exists $ \tilde\lambda>0 $such that if $ \lambda>\tilde\lambda $, problem (1) has no nontrivial solutions. While for $ p>4 $we assume in addition that $ x\cdot \nabla V(x)\geq 0 $, then problem (1) admits a mountain pass solution for all $ \lambda>0 $. Citation: Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1967-1981. doi: 10.3934/dcdss.2021008 ##### References:   J. Byeon, H. Huh and J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575-1608. doi: 10.1016/j.jfa.2012.05.024.   J. Byeon, H. Huh and J. Seok, On standing waves with a vortex point of order$N$for the non-linear Chern-Simons-Schrödinger equations, J. Differ. Equ., 261 (2016), 1285-1316. doi: 10.1016/j.jde.2016.04.004.   P. L. Cunha, P. d'Avenia, A. Pomponio and G. Siciliano, A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity, Nonlinear Differ. Equ. Appl., 22 (2015), 1831-1850. doi: 10.1007/s00030-015-0346-x.   V. Dunne, Self-Dual Chern-Simons Theories, Springer, New York, 1995. doi: 10.1007/978-3-540-44777-1.  Y. He and G. Li, Standing waves for a class of Schrödinger-Poisson equations in$\mathbb{R}^3$involving critical Sobolev exponents, Ann. Acad. Sci. Fenn. Math., 40 (2015), 729-766. doi: 10.5186/aasfm.2015.4041.   H. Huh, Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field, J. Math. Phys., 53 (2012), 063702, 8 pp. doi: 10.1063/1.4726192.   R. Jackiw and S.-Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500-3513. doi: 10.1103/PhysRevD.42.3500.   R. Jackiw and S.-Y. Pi, Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, Phys. Rev. Lett., 64 (1990), 2969-2972. doi: 10.1103/PhysRevLett.64.2969.   R. Jackiw and S.-Y. Pi, Self-dual Chern-Simons solitons, Progr. Theoret. Phys. Suppl., 107 (1992), 1-40. doi: 10.1143/PTPS.107.1.   Y. Jiang and H. Zhou, Schrödinger-Poisson system with steep potential well, J. Differ. Equ., 251 (2011), 582-608. doi: 10.1016/j.jde.2011.05.006.   Y. Jiang and H. Zhou, Multiple solutions for a Schrödinger-Poisson-Slater equation with external Coulomb potential, Sci. China Math., 57 (2014), 1163-1174. doi: 10.1007/s11425-014-4790-6.   A. Pomponio and D. Ruiz, A variational analysis of a gauged nonlinear Schrödinger equation, J. Eur. Math. Soc., 17 (2015), 1463-1486. doi: 10.4171/JEMS/535.   A. Pomponio and D. Ruiz, Boundary concentration of a gauged nonlinear Schrödinger equation on large balls, Calc. Var. Partial Differential Equations, 53 (2015), 289-316. doi: 10.1007/s00526-014-0749-2.   Y. Wan and J. Tan, Standing waves for the Chern-Simons-Schrödinger systems without$(AR)$condition, J. Math. Anal. Appl., 415 (2014), 422-434. doi: 10.1016/j.jmaa.2014.01.084.   Y. Wan and J. Tan, The existence of nontrivial solutions to Chern-Simons-Schrödinger systems, Discrete Contin. Dyn. Syst., 37 (2017), 2765-2786. doi: 10.3934/dcds.2017119.   M. Willem, Minimax Thorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston MA, 1996. doi: 10.1007/978-1-4612-4146-1.   show all references ##### References:   J. Byeon, H. Huh and J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575-1608. doi: 10.1016/j.jfa.2012.05.024.   J. Byeon, H. Huh and J. Seok, On standing waves with a vortex point of order$N$for the non-linear Chern-Simons-Schrödinger equations, J. Differ. Equ., 261 (2016), 1285-1316. doi: 10.1016/j.jde.2016.04.004.   P. L. Cunha, P. d'Avenia, A. Pomponio and G. Siciliano, A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity, Nonlinear Differ. Equ. Appl., 22 (2015), 1831-1850. doi: 10.1007/s00030-015-0346-x.   V. Dunne, Self-Dual Chern-Simons Theories, Springer, New York, 1995. doi: 10.1007/978-3-540-44777-1.  Y. He and G. Li, Standing waves for a class of Schrödinger-Poisson equations in$\mathbb{R}^3$involving critical Sobolev exponents, Ann. Acad. Sci. Fenn. Math., 40 (2015), 729-766. doi: 10.5186/aasfm.2015.4041.   H. Huh, Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field, J. Math. Phys., 53 (2012), 063702, 8 pp. doi: 10.1063/1.4726192.   R. Jackiw and S.-Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500-3513. doi: 10.1103/PhysRevD.42.3500.   R. Jackiw and S.-Y. Pi, Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, Phys. Rev. Lett., 64 (1990), 2969-2972. doi: 10.1103/PhysRevLett.64.2969.   R. Jackiw and S.-Y. Pi, Self-dual Chern-Simons solitons, Progr. Theoret. Phys. Suppl., 107 (1992), 1-40. doi: 10.1143/PTPS.107.1.   Y. Jiang and H. Zhou, Schrödinger-Poisson system with steep potential well, J. Differ. Equ., 251 (2011), 582-608. doi: 10.1016/j.jde.2011.05.006.   Y. Jiang and H. Zhou, Multiple solutions for a Schrödinger-Poisson-Slater equation with external Coulomb potential, Sci. China Math., 57 (2014), 1163-1174. doi: 10.1007/s11425-014-4790-6.   A. Pomponio and D. Ruiz, A variational analysis of a gauged nonlinear Schrödinger equation, J. Eur. Math. Soc., 17 (2015), 1463-1486. doi: 10.4171/JEMS/535.   A. Pomponio and D. Ruiz, Boundary concentration of a gauged nonlinear Schrödinger equation on large balls, Calc. Var. Partial Differential Equations, 53 (2015), 289-316. doi: 10.1007/s00526-014-0749-2.   Y. Wan and J. Tan, Standing waves for the Chern-Simons-Schrödinger systems without$(AR)$condition, J. Math. Anal. Appl., 415 (2014), 422-434. doi: 10.1016/j.jmaa.2014.01.084.   Y. Wan and J. Tan, The existence of nontrivial solutions to Chern-Simons-Schrödinger systems, Discrete Contin. Dyn. Syst., 37 (2017), 2765-2786. doi: 10.3934/dcds.2017119.   M. Willem, Minimax Thorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston MA, 1996. doi: 10.1007/978-1-4612-4146-1.   Youyan Wan, Jinggang Tan. The existence of nontrivial solutions to Chern-Simons-Schrödinger systems. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2765-2786. doi: 10.3934/dcds.2017119  Jincai Kang, Chunlei Tang. Existence of nontrivial solutions to Chern-Simons-Schrödinger system with indefinite potential. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021016  Jianjun Yuan. Global existence and scattering of equivariant defocusing Chern-Simons-Schrödinger system. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5541-5570. doi: 10.3934/dcds.2020237  Jeongho Kim, Bora Moon. Hydrodynamic limits of the nonlinear Schrödinger equation with the Chern-Simons gauge fields. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2541-2561. doi: 10.3934/dcds.2021202  Hartmut Pecher. Local solutions with infinite energy of the Maxwell-Chern-Simons-Higgs system in Lorenz gauge. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2193-2204. doi: 10.3934/dcds.2016.36.2193  Youngae Lee. Topological solutions in the Maxwell-Chern-Simons model with anomalous magnetic moment. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1293-1314. doi: 10.3934/dcds.2018053  Youngae Lee. Non-topological solutions in a generalized Chern-Simons model on torus. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1315-1330. doi: 10.3934/cpaa.2017064  Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure and Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276  Jianjun Yuan. On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2389-2403. doi: 10.3934/dcds.2014.34.2389  Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure and Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83  Kwangseok Choe, Jongmin Han, Chang-Shou Lin. Bubbling solutions for the Chern-Simons gauged$O(3)$sigma model in$\mathbb{R}^2$. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2703-2728. doi: 10.3934/dcds.2014.34.2703  Chenglin Wang, Jian Zhang. Cross-constrained variational method and nonlinear Schrödinger equation with partial confinement. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021036  Zhi-You Chen, Chung-Yang Wang, Yu-Jen Huang. On the asymptotic behavior of solutions for the self-dual Maxwell-Chern-Simons$ O(3) \$ Sigma model. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022077  Hartmut Pecher. The Chern-Simons-Higgs and the Chern-Simons-Dirac equations in Fourier-Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4875-4893. doi: 10.3934/dcds.2019199  Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1511-1547. doi: 10.3934/dcdsb.2021100  Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267  Hui Guo, Tao Wang. A note on sign-changing solutions for the Schrödinger Poisson system. Electronic Research Archive, 2020, 28 (1) : 195-203. doi: 10.3934/era.2020013  Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure and Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048  Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025  Silvia Cingolani, Mnica Clapp, Simone Secchi. Intertwining semiclassical solutions to a Schrödinger-Newton system. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 891-908. doi: 10.3934/dcdss.2013.6.891

2021 Impact Factor: 1.865